Accessory Parameters for Four-Punctured Spheres
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the accessory parameter problem for four-punctured spheres from the point of view of modular forms. The value of the accessory parameter giving the uniformization is characterized as the unique zero of a system of equations. This gives an effective method to compute the uniformizing differential equation. As an application, we compute numerically and study the local expansion of the real-analytic function associating to a four-punctured sphere the value of its uniformizing parameter, and make some observations on its coefficients.
Keywords: accessory parameters, Fuchsian uniformization, modular forms.
@article{SIGMA_2022_18_a23,
     author = {Gabriele Bogo},
     title = {Accessory {Parameters} for {Four-Punctured} {Spheres}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a23/}
}
TY  - JOUR
AU  - Gabriele Bogo
TI  - Accessory Parameters for Four-Punctured Spheres
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a23/
LA  - en
ID  - SIGMA_2022_18_a23
ER  - 
%0 Journal Article
%A Gabriele Bogo
%T Accessory Parameters for Four-Punctured Spheres
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a23/
%G en
%F SIGMA_2022_18_a23
Gabriele Bogo. Accessory Parameters for Four-Punctured Spheres. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a23/

[1] Anselmo T., Nelson R., Carneiro da Cunha B., Crowdy D.G., “Accessory parameters in conformal mapping: exploiting the isomonodromic tau function for Painlevé VI”, Proc. A., 474 (2018), 20180080, 20 pp. | DOI | MR | Zbl

[2] Beardon A.F., The geometry of discrete groups, Graduate Texts in Mathematics, 91, Springer-Verlag, New York, 1983 | DOI | MR | Zbl

[3] Bers L., “Quasiconformal mappings, with applications to differential equations, function theory and topology”, Bull. Amer. Math. Soc., 83 (1977), 1083–1100 | DOI | MR | Zbl

[4] Bogo G., “Modular forms, deformation of punctured spheres, and extensions of symmetric tensor representations”, Math. Res. Lett. (to appear)

[5] Bouw I.I., Möller M., “Differential equations associated with nonarithmetic Fuchsian groups”, J. Lond. Math. Soc., 81 (2010), 65–90, arXiv: 0710.5277 | DOI | MR | Zbl

[6] Bruinier J.H., van der Geer G., Harder G., Zagier D., The 1-2-3 of modular forms, Universitext, Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl

[7] Chudnovsky D.V., Chudnovsky G.V., “Transcendental methods and theta-functions”, Theta Functions – Bowdoin 1987 (Brunswick, ME, 1987), v. 2, Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 167–232 | DOI | MR

[8] de Saint-Gervais H.P., Uniformization of Riemann surfaces, Heritage of European Mathematics, European Mathematical Society (EMS), Zürich, 2016 | DOI | MR | Zbl

[9] Ford L.R., Automorphic functions, 2nd ed., Chelsea Publishing Co., New York, 1951 | MR | Zbl

[10] Goldman W.M., “Projective structures with Fuchsian holonomy”, J. Differential Geom., 25 (1987), 297–326 | DOI | MR | Zbl

[11] Hempel J.A., “On the uniformization of the $n$-punctured sphere”, Bull. London Math. Soc., 20 (1988), 97–115 | DOI | MR | Zbl

[12] Hoffman J., Monodromy calculations for some differential equations, Ph.D. Thesis, Johannes Gutenberg-Universität Mainz, 2013

[13] Keen L., Rauch H.E., Vasquez A.T., “Moduli of punctured tori and the accessory parameter of Lamé's equation”, Trans. Amer. Math. Soc., 255 (1979), 201–230 | DOI | MR | Zbl

[14] Kra I., “Accessory parameters for punctured spheres”, Trans. Amer. Math. Soc., 313 (1989), 589–617 | DOI | MR | Zbl

[15] Miyake T., Modular forms, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl

[16] Nehari Z., “On the accessory parameters of a Fuchsian differential equation”, Amer. J. Math., 71 (1949), 24–39 | DOI | MR | Zbl

[17] Poincaré H., “Sur les groupes des équations linéaires”, Acta Math., 4 (1884), 201–312 | DOI | MR | Zbl

[18] Polyakov A.M., “Quantum geometry of bosonic strings”, Phys. Lett. B, 103 (1981), 207–210 | DOI | MR

[19] Smirnov V., “Sur les équations différentielles linéaires du second ordre et la théorie des fonctions automorphes”, Bull. Sci. Math., 45 (1921), 93–120 | Zbl

[20] Takhtajan L.A., “Liouville theory: quantum geometry of Riemann surfaces”, Modern Phys. Lett. A, 8 (1993), 3529–3535, arXiv: hep-th/9308125 | DOI | MR | Zbl

[21] Thompson J.G., “Algebraic numbers associated to certain punctured spheres”, J. Algebra, 104 (1986), 61–73 | DOI | MR | Zbl

[22] Zagier D., “Integral solutions of Apéry-like recurrence equations”, Groups and Symmetries, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 349–366 | DOI | MR | Zbl

[23] Zograf P.G., Takhtajan L.A., “On Liouville equation, accessory parameters and the geometry of Teichmüller space for Riemann surfaces of genus $0$”, Math. USSR-Sb., 60 (1988), 143–161 | DOI | MR | Zbl