@article{SIGMA_2022_18_a22,
author = {Mahdi J. Hasan Al-Kaabi and Kurusch Ebrahimi-Fard and Dominique Manchon},
title = {Post-Lie {Magnus} {Expansion} and {BCH-Recursion}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a22/}
}
TY - JOUR AU - Mahdi J. Hasan Al-Kaabi AU - Kurusch Ebrahimi-Fard AU - Dominique Manchon TI - Post-Lie Magnus Expansion and BCH-Recursion JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a22/ LA - en ID - SIGMA_2022_18_a22 ER -
Mahdi J. Hasan Al-Kaabi; Kurusch Ebrahimi-Fard; Dominique Manchon. Post-Lie Magnus Expansion and BCH-Recursion. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a22/
[1] Agrachev A.A., Gamkrelidze R.V., “Chronological algebras and nonstationary vector fields”, J. Sov. Math., 17 (1981), 1650–1675 | DOI | MR
[2] Al-Kaabi M.J.H., “Monomial bases for free pre-Lie algebras”, Sém. Lothar. Combin., 71 (2014), B71b, 19 pp., arXiv: 1309.4243 | MR | Zbl
[3] Arnal A., Casas F., Chiralt C., “A note on the Baker–Campbell–Hausdorff series in terms of right-nested commutators”, Mediterr. J. Math., 18 (2021), 53, 16 pp., arXiv: 2006.15869 | DOI | MR | Zbl
[4] Bai C., Guo L., Ni X., “Nonabelian generalized Lax pairs, the classical Yang–Baxter equation and PostLie algebras”, Comm. Math. Phys., 297 (2010), 553–596, arXiv: 0910.3262 | DOI | MR | Zbl
[5] Baxter G., “An analytic problem whose solution follows from a simple algebraic identity”, Pacific J. Math., 10 (1960), 731–742 | DOI | MR | Zbl
[6] Blanes S., Casas F., Oteo J.A., Ros J., “The Magnus expansion and some of its applications”, Phys. Rep., 470 (2009), 151–238, arXiv: 0810.5488 | DOI | MR
[7] Bonfiglioli A., Fulci R., Topics in noncommutative algebra. The theorem of Campbell, Baker, Hausdorff and Dynkin, Lecture Notes in Math., 2034, Springer, Heidelberg, 2012 | DOI | MR
[8] Butcher J.C., “An algebraic theory of integration methods”, Math. Comp., 26 (1972), 79–106 | DOI | MR | Zbl
[9] Chapoton F., Livernet M., “Pre-Lie algebras and the rooted trees operad”, Int. Math. Res. Not., 2001 (2001), 395–408, arXiv: math.QA/0002069 | DOI | MR | Zbl
[10] Chapoton F., Patras F., “Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula”, Internat. J. Algebra Comput., 23 (2013), 853–861, arXiv: 1201.2159 | DOI | MR | Zbl
[11] Curry C., Ebrahimi-Fard K., Munthe-Kaas H.Z., “What is a post-Lie algebra and why is it useful in geometric integration”, Numerical Mathematics and Advanced Applications – ENUMATH 2017, Lect. Notes Comput. Sci. Eng., 126, Springer, Cham, 2019, 429–437, arXiv: 1712.09415 | DOI | MR
[12] Curry C., Ebrahimi-Fard K., Owren B., “The Magnus expansion and post-Lie algebras”, Math. Comp., 89 (2020), 2785–2799, arXiv: 1808.04156 | DOI | MR | Zbl
[13] Ebrahimi-Fard K., Guo L., Kreimer D., “Spitzer's identity and the algebraic Birkhoff decomposition in pQFT”, J. Phys. A: Math. Gen., 37 (2004), 11037–11052, arXiv: hep-th/0407082 | DOI | MR | Zbl
[14] Ebrahimi-Fard K., Guo L., Kreimer D., “Integrable renormalization. II The general case”, Ann. Henri Poincaré, 6 (2005), 369–395, arXiv: hep-th/0403118 | DOI | MR | Zbl
[15] Ebrahimi-Fard K., Guo L., Manchon D., “Birkhoff type decompositions and the Baker–Campbell–Hausdorff recursion”, Comm. Math. Phys., 267 (2006), 821–845, arXiv: math-ph/0602004 | DOI | MR | Zbl
[16] Ebrahimi-Fard K., Lundervold A., Munthe-Kaas H.Z., “On the Lie enveloping algebra of a post-Lie algebra”, J. Lie Theory, 25 (2015), 1139–1165, arXiv: 1410.6350 | MR | Zbl
[17] Ebrahimi-Fard K., Manchon D., “A Magnus- and Fer-type formula in dendriform algebras”, Found. Comput. Math., 9 (2009), 295–316, arXiv: 0707.0607 | DOI | MR | Zbl
[18] Ebrahimi-Fard K., Mencattini I., “Post-Lie algebras, factorization theorems and isospectral flows”, Discrete mechanics, Geometric Integration and Lie–Butcher series, Springer Proc. Math. Stat., 267, eds. K. Ebrahimi-Fard, M. Linán Barbero, Springer, Cham, 2018, 231–285, arXiv: 1711.02694 | DOI | MR
[19] Ebrahimi-Fard K., Mencattini I., Munthe-Kaas H.Z., “Post-Lie algebras and factorization theorems”, J. Geom. Phys., 119 (2017), 19–33, arXiv: 1701.07786 | DOI | MR | Zbl
[20] Ebrahimi-Fard K., Patras F., “From iterated integrals and chronological calculus to Hopf and Rota–Baxter algebras”, Algebra and Applications 2: Combinatorial Algebra and Hopf Algebras, ISTE Ltd, 2021, 55–118, arXiv: 1911.08766 | DOI | MR | Zbl
[21] Grossman R., Larson R.G., “Hopf-algebraic structure of families of trees”, J. Algebra, 126 (1989), 184–210 | DOI | MR | Zbl
[22] Guo L., An introduction to Rota–Baxter algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA; Higher Education Press, Beijing, 2012 | MR | Zbl
[23] Iserles A., Nørsett S.P., “On the solution of linear differential equations in Lie groups”, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357 (1999), 983–1019 | DOI | MR | Zbl
[24] Magnus W., “On the exponential solution of differential equations for a linear operator”, Comm. Pure Appl. Math., 7 (1954), 649–673 | DOI | MR | Zbl
[25] Manchon D., “A short survey on pre-Lie algebras”, Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, ESI Lect. Math. Phys., ed. A.L. Carey, Eur. Math. Soc., Zürich, 2011, 89–102 | DOI | MR | Zbl
[26] Mencattini I., Quesney A., Silva P., “Post-symmetric braces and integration of post-Lie algebras”, J. Algebra, 556 (2020), 547–580, arXiv: 1907.12081 | DOI | MR | Zbl
[27] Mielnik B., Plebański J., “Combinatorial approach to Baker–Campbell–Hausdorff exponents”, Ann. Inst. H. Poincaré Sect. A (N.S.), 12 (1970), 215–254 | MR | Zbl
[28] Munthe-Kaas H.Z., Lundervold A., “On post-Lie algebras, Lie–Butcher series and moving frames”, Found. Comput. Math., 13 (2013), 583–613, arXiv: 1203.4738 | DOI | MR | Zbl
[29] Munthe-Kaas H.Z., Wright W.M., “On the Hopf algebraic structure of Lie group integrators”, Found. Comput. Math., 8 (2008), 227–257, arXiv: math.AC/0603023 | DOI | MR | Zbl
[30] Oudom J.-M., Guin D., “On the Lie enveloping algebra of a pre-Lie algebra”, J. K-Theory, 2 (2008), 147–167, arXiv: math.QA/0404457 | DOI | MR | Zbl
[31] Spitzer F., “A combinatorial lemma and its application to probability theory”, Trans. Amer. Math. Soc., 82 (1956), 323–339 | DOI | MR | Zbl
[32] Vallette B., “Homology of generalized partition posets”, J. Pure Appl. Algebra, 208 (2007), 699–725, arXiv: math.AT/0405312 | DOI | MR | Zbl