Deformed Quantum Phase Spaces, Realizations, Star Products and Twists
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review deformed quantum phase spaces and their realizations in terms of undeformed phase space. In particular, methods of calculation for the star product, coproduct of momenta and twist from realizations are presented, as well as their properties and the relations between them. Lie deformed quantum phase spaces and Snyder type spaces are considered. Examples of linear realizations of the $\kappa$-Minkowski spacetime are elaborated. Finally, some new results on quadratic deformations of quantum phase spaces and a generalization of Yang and triply special relativity models are presented.
Keywords: deformed quantum phase spaces, realizations, star products, twists.
@article{SIGMA_2022_18_a21,
     author = {Stjepan Meljanac and Rina \v{S}trajn},
     title = {Deformed {Quantum} {Phase} {Spaces,} {Realizations,} {Star} {Products} and {Twists}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a21/}
}
TY  - JOUR
AU  - Stjepan Meljanac
AU  - Rina Štrajn
TI  - Deformed Quantum Phase Spaces, Realizations, Star Products and Twists
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a21/
LA  - en
ID  - SIGMA_2022_18_a21
ER  - 
%0 Journal Article
%A Stjepan Meljanac
%A Rina Štrajn
%T Deformed Quantum Phase Spaces, Realizations, Star Products and Twists
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a21/
%G en
%F SIGMA_2022_18_a21
Stjepan Meljanac; Rina Štrajn. Deformed Quantum Phase Spaces, Realizations, Star Products and Twists. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a21/

[1] Abreu E.M.C., Mendes A.C.R., Oliveira W., Zangirolami A.O., “The noncommutative Doplicher–Fredenhagen–Roberts–Amorim space”, SIGMA, 6 (2010), 083, 37 pp., arXiv: 1003.5322 | DOI | MR | Zbl

[2] Addazi A., Alvarez-Muniz J., Batista R.A. et al., Quantum gravity phenomenology at the dawn of the multi-messenger era – a review, arXiv: 2111.05659

[3] Amelino-Camelia G., “Testable scenario for Relativity with minimum-length”, Phys. Lett B, 510 (2001), 255–263, arXiv: hep-th/0012238 | DOI | Zbl

[4] Amelino-Camelia G., “Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale”, Internat. J. Modern Phys. D, 11 (2002), 35–59, arXiv: gr-qc/0012051 | DOI | MR | Zbl

[5] Amelino-Camelia G., “Quantum-spacetime phenomenology”, Living Rev. Relativ., 16 (2013), 5, 137 pp. | DOI

[6] Amelino-Camelia G., Arzano M., “Coproduct and star product in field theories on Lie-algebra noncommutative space-times”, Phys. Rev. D, 65 (2002), 084044, 8 pp., arXiv: hep-th/0105120 | DOI | MR

[7] Amelino-Camelia G., Lukierski J., Nowicki A., “$\kappa$-deformed covariant phase space and quantum-gravity uncertainty relations”, Phys. Atomic Nuclei, 61 (1998), 1811–1815, arXiv: hep-th/9706031 | MR

[8] Amelino-Camelia G., Majid S., “Waves on noncommutative space-time and gamma-ray bursts”, Internat. J. Modern Phys. A, 15 (2000), 4301–4323, arXiv: hep-th/9907110 | DOI | MR | Zbl

[9] Amelino-Camelia G., Smolin L., Starodubtsev A., “Quantum symmetry, the cosmological constant and Planck-scale phenomenology”, Classical Quantum Gravity, 21 (2004), 3095–3110, arXiv: hep-th/0306134 | DOI | MR | Zbl

[10] Amorim R., “Tensor coordinates in noncommutative mechanics”, J. Math. Phys., 50 (2009), 052103, 7 pp., arXiv: 0804.4405 | DOI | MR | Zbl

[11] Arzano M., Kowalski-Glikman J., Deformations of spacetime symmetries – gravity, group-valued momenta, and non-commutative fields, Lecture Notes in Physics, 986, Springer-Verlag, Berlin, 2021 | DOI | MR

[12] Aschieri P., Borowiec A., Pachoł A., “Observables and dispersion relations in $\kappa$-Minkowski spacetime”, J. High Energy Phys., 2017:10 (2017), 152, 27 pp., arXiv: 1703.08726 | DOI | MR | Zbl

[13] Aschieri P., Borowiec A., Pachoł A., “Dispersion relations in $\kappa$-noncommutative cosmology”, J. Cosmol. Astropart. Phys., 2021:4 (2021), 025, 19 pp., arXiv: 2009.01051 | DOI | MR

[14] Aschieri P., Dimitrijević M., Kulish P., Lizzi F., Wess J., Noncommutative spacetimes: symmetries in noncommutative geometry and field theory, Lecture Notes in Phys., 774, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[15] Ballesteros A., Gubitosi G., Mercati F., “Interplay between spacetime curvature, speed of light and quantum deformations of relativistic symmetries”, Symmetry, 13:11 (2021), 2099, 22 pp., arXiv: 2110.04867 | DOI

[16] Banerjee R., Kulkarni S., Samanta S., “Deformed symmetry in Snyder space and relativistic particle dynamics”, J. High Energy Phys., 2006:5 (2006), 077, 22 pp., arXiv: hep-th/0602151 | DOI

[17] Banerjee R., Kumar K., Roychowdhury D., “Symmetries of Snyder-de Sitter space and relativistic particle dynamics”, J. High Energy Phys., 2011:3 (2011), 060, 14 pp., arXiv: 1101.2021 | DOI | MR | Zbl

[18] Bardek V., Meljanac S., “Deformed Heisenberg algebras, a Fock-space representation and the Calogero model”, Eur. Phys. J. C Part. Fields, 17 (2000), 539–547, arXiv: hep-th/0009099 | DOI | MR | Zbl

[19] Batista E., Majid S., “Noncommutative geometry of angular momentum space $U(\mathfrak{su}(2))$”, J. Math. Phys., 44 (2003), 107–137, arXiv: hep-th/0205128 | DOI | MR | Zbl

[20] Battisti M.V., Meljanac S., “Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry”, Phys. Rev. D, 79 (2009), 067505, 4 pp., arXiv: 0812.3755 | DOI | MR

[21] Battisti M.V., Meljanac S., “Scalar field theory on noncommutative Snyder spacetime”, Phys. Rev. D, 82 (2010), 024028, 9 pp., arXiv: 1003.2108 | DOI | MR

[22] Beckers J., Brihaye Y., Debergh N., “On realizations of “nonlinear” Lie algebras by differential operators”, J. Phys. A: Math. Gen., 32 (1999), 2791–2803, arXiv: hep-th/9803253 | DOI | MR | Zbl

[23] Borowiec A., Meljanac D., Meljanac S., Pachoł A., “Interpolations between Jordanian twists induced by coboundary twists”, SIGMA, 15 (2019), 054, 22 pp., arXiv: 1812.05535 | DOI | MR | Zbl

[24] Carmona J.M., Cortés J.L., Relancio J.J., “Relativistic deformed kinematics from momentum space geometry”, Phys. Rev. D, 100 (2019), 104031, 10 pp., arXiv: 1907.12298 | DOI | MR

[25] Carmona J.M., Cortés J.L., Relancio J.J., “Relativistic deformed kinematics from locality conditions in a generalized spacetime”, Phys. Rev. D, 101 (2020), 044057, 15 pp., arXiv: 1912.12885 | DOI | MR

[26] Carmona J.M., Cortés J.L., Relancio J.J., “Curved momentum space, locality, and generalized space-time”, Universe, 7:4 (2021), 99, 17 pp., arXiv: 2104.07336 | DOI

[27] Carrisi M.C., Mignemi S., “Snyder–de Sitter model from two-time physics”, Phys. Rev. D, 82 (2010), 105031, 5 pp., arXiv: 1010.6258 | DOI

[28] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[29] Chryssomalakos C., Okon E., “Star product and invariant integration for Lie type noncommutative spacetimes”, J. High Energy Phys., 2007:8 (2007), 012, 22 pp., arXiv: 0705.3780 | DOI | MR | Zbl

[30] Daszkiewicz M., Lukierski J., Woronowicz M., “Towards quantum noncommutative $\kappa$-deformed field theory”, Phys. Rev. D, 77 (2008), 105007, 10 pp., arXiv: 0708.1561 | DOI | MR

[31] Daszkiewicz M., Walczyk C.J., “Newton equation for canonical, Lie-algebraic, and quadratic deformation of classical space”, Phys. Rev. D, 77 (2008), 105008, 7 pp., arXiv: 0802.3575 | DOI | MR

[32] Doplicher S., Fredenhagen K., Roberts J.E., “Spacetime quantization induced by classical gravity”, Phys. Lett B, 331 (1994), 39–44 | DOI | MR

[33] Doplicher S., Fredenhagen K., Roberts J.E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl

[34] Durov N., Meljanac S., Samsarov A., Škoda Z., “A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra”, J. Algebra, 309 (2007), 318–359, arXiv: math.RT/0604096 | DOI | MR | Zbl

[35] Freidel L., Kowalski-Glikman J., Nowak S., “From noncommutative $\kappa$-Minkowski to Minkowski space-time”, Phys. Lett. B, 648 (2007), 70–75, arXiv: hep-th/0612170 | DOI | MR | Zbl

[36] Freidel L., Livine E.R., “3D quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: hep-th/0512113 | DOI | MR | Zbl

[37] Garay L.J., “Quantum gravity and minimum length”, Internat. J. Modern Phys. A, 10 (1995), 145–166, arXiv: gr-qc/9403008 | DOI

[38] Giller S., Kosiński P., Majewski M., Maślanka P., Kunz J., “More about the $q$-deformed Poincaré algebra”, Phys. Lett. B, 286 (1992), 57–62 | DOI | MR

[39] Girelli F., Livine E.R., “Scalar field theory in Snyder space-time: alternatives”, J. High Energy Phys., 2011:3 (2011), 132, 31 pp., arXiv: 1004.0621 | DOI | MR | Zbl

[40] Gnatenko K.P., “Parameters of noncommutativity in Lie-algebraic noncommutative space”, Phys. Rev. D, 99 (2019), 026009, 9 pp., arXiv: 1811.00419 | DOI | MR

[41] Govindarajan T.R., Gupta K.S., Harikumar E., Meljanac S., Meljanac D., “Twisted statistics in $\kappa$-Minkowski spacetime”, Phys. Rev. D, 77 (2008), 105010, 6 pp., arXiv: 0802.1576 | DOI | MR

[42] Govindarajan T.R., Gupta K.S., Harikumar E., Meljanac S., Meljanac D., “Deformed oscillator algebras and QFT in $\kappa$-Minkowski spacetime”, Phys. Rev. D, 80 (2009), 025014, 11 pp., arXiv: 0903.2355 | DOI | MR

[43] Gracia-Bondía J.M., Lizzi F., Marmo G., Vitale P., “Infinitely many star products to play with”, J. High Energy Phys., 2002:4 (2002), 026, 35 pp., arXiv: hep-th/0112092 | DOI | MR

[44] Guo H.-Y., Huang C.-G., Wu H.-T., “Yang's model as triply special relativity and the Snyder's model – de Sitter special relativity duality”, Phys. Lett. B, 663 (2008), 270–274, arXiv: 0801.1146 | DOI | MR | Zbl

[45] Gutt S., “An explicit $^{\ast} $-product on the cotangent bundle of a Lie group”, Lett. Math. Phys., 7 (1983), 249–258 | DOI | MR | Zbl

[46] Halliday S., Szabo R.J., “Noncommutative field theory on homogeneous gravitational waves”, J. Phys. A: Math. Gen., 39 (2006), 5189–5225, arXiv: hep-th/0602036 | DOI | MR | Zbl

[47] Jurić T., Kovačević D., Meljanac S., “$\kappa$-deformed phase space, Hopf algebroid and twisting”, SIGMA, 10 (2014), 106, 18 pp., arXiv: 1402.0397 | DOI | MR | Zbl

[48] Jurić T., Meljanac S., Pikutić D., “Realizations of $\kappa$-Minkowski space, Drinfeld twists and related symmetry algebras”, Eur. Phys. J. C Part. Fields, 75 (2015), 528, 16 pp., arXiv: 1506.04955 | DOI

[49] Jurić T., Meljanac S., Pikutić D., Štrajn R., “Toward the classification of differential calculi on $\kappa$-Minkowski space and related field theories”, J. High Energy Phys., 2015:7 (2015), 055, 33 pp., arXiv: 1502.02972 | DOI | MR

[50] Jurić T., Meljanac S., Samsarov A., “Light-like $\kappa$-deformations and scalar field theory via Drinfeld twist”, J. Phys. Conf. Ser., 634 (2015), 012005, 11 pp., arXiv: 1506.02475 | DOI

[51] Jurić T., Meljanac S., Štrajn R., “$\kappa$-Poincaré–Hopf algebra and Hopf algebroid structure of phase space from twist”, Phys. Lett. A, 377 (2013), 2472–2476, arXiv: 1303.0994 | DOI | MR | Zbl

[52] Koornwinder T.H., “Special functions and $q$-commuting variables”, Special Functions, $q$-Series and Related Topics (Toronto, ON, 1995), Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997, 131–166, arXiv: q-alg/9608008 | DOI | MR | Zbl

[53] Koornwinder T.H., Swarttouw R.F., On $q$-analogues of the Fourier and Hankel transforms, arXiv: 1208.2521

[54] Kowalski-Glikman J., Nowak S., “Non-commutative space-time of doubly special relativity theories”, Internat. J. Modern Phys. D, 12 (2003), 299–315, arXiv: hep-th/0204245 | DOI | MR | Zbl

[55] Kowalski-Glikman J., Smolin L., “Triply special relativity”, Phys. Rev. D, 70 (2004), 065020, 6 pp., arXiv: hep-th/0406276 | DOI | MR

[56] Kulish P.P., Lyakhovsky V.D., Mudrov A.I., “Extended Jordanian twists for Lie algebras”, J. Math. Phys., 40 (1999), 4569–4586, arXiv: math.QA/9806014 | DOI | MR | Zbl

[57] Kupriyanov V.G., Kurkov M., Vitale P., “$\kappa$-Minkowski-deformation of $\rm U(1)$ gauge theory”, J. High Energy Phys., 2021:1 (2021), 102, 17 pp., arXiv: 2010.09863 | DOI | MR | Zbl

[58] Kupriyanov V.G., Vitale P., “Noncommutative $\mathbb R^d$ via closed star product”, J. High Energy Phys., 2015:8 (2015), 024, 25 pp., arXiv: 1502.06544 | DOI | MR

[59] Kupriyanov V.G., Vitale P., “A novel approach to non-commutative gauge theory”, J. High Energy Phys., 2020:8 (2020), 041, 14 pp., arXiv: 2004.14901 | DOI | MR

[60] Lizzi F., Vitale P., “Time discretization from noncommutativity”, Phys. Lett. B, 818 (2021), 136372, 6 pp., arXiv: 2101.06633 | DOI | MR | Zbl

[61] Lu L., Stern A., “Particle dynamics on Snyder space”, Nuclear Phys. B, 860 (2012), 186–205, arXiv: 1110.4112 | DOI | MR | Zbl

[62] Lu L., Stern A., “Snyder space revisited”, Nuclear Phys. B, 854 (2012), 894–912, arXiv: 1108.1832 | DOI | MR | Zbl

[63] Lukierski J., Meljanac D., Meljanac S., Pikutić D., Woronowicz M., “Lie-deformed quantum Minkowski spaces from twists: Hopf-algebraic versus Hopf-algebroid approach”, Phys. Lett. B, 777 (2018), 1–7, arXiv: 1710.09772 | DOI | MR | Zbl

[64] Lukierski J., Meljanac S., Woronowicz M., “Quantum twist-deformed $D=4$ phase spaces with spin sector and Hopf algebroid structures”, Phys. Lett. B, 789 (2019), 82–87, arXiv: 1811.07365 | DOI | MR | Zbl

[65] Lukierski J., Nowicki A., Ruegg H., “New quantum Poincaré algebra and $\kappa$-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl

[66] Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., “$q$-deformation of Poincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR

[67] Lukierski J., Woronowicz M., “New Lie-algebraic and quadratic deformations of Minkowski space from twisted Poincaré symmetries”, Phys. Lett. B, 633 (2006), 116–124, arXiv: hep-th/0508083 | DOI | MR | Zbl

[68] Lukierski J., Woronowicz M., “Spinorial Snyder and Yang models from superalgebras and noncommutative quantum superspaces”, Phys. Lett. B, 824 (2022), 136783, 6 pp., arXiv: 2110.13697 | DOI | MR | Zbl

[69] Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, 206, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[70] Magueijo J., Smolin L., “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88 (2002), 190403, 4 pp., arXiv: hep-th/0112090 | DOI | MR

[71] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[72] Majid S., Ruegg H., “Bicrossproduct structure of $\kappa$-Poincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9405107 | DOI | MR | Zbl

[73] Maślanka P., “The $n$-dimensional $\kappa$-Poincaré algebra and group”, J. Phys. A: Math. Gen., 26 (1993), L1251–L1253 http://stacks.iop.org/0305-4470/26/L1251 | DOI | Zbl

[74] Mathieu P., Wallet J.-C., “Gauge theories on $\kappa$-Minkowski spaces: twist and modular operators”, J. High Energy Phys., 2020:5 (2020), 112, 30 pp., arXiv: 2002.02309 | DOI | MR | Zbl

[75] Mathieu P., Wallet J.-C., Single extra dimension from $\kappa$-Poincaré and gauge invariance, J. High Energy Phys., 2021:3 (2021), 209, 25 pp., arXiv: 2007.14187 | DOI | MR | Zbl

[76] Meljanac D., Meljanac S., Mignemi S., Pikutić D., Štrajn R., “Twist for Snyder space”, Eur. Phys. J. C Part. Fields, 78 (2018), 194, 9 pp., arXiv: 1711.02941 | DOI | MR

[77] Meljanac D., Meljanac S., Mignemi S., Štrajn R., “$\kappa$-deformed phase spaces, Jordanian twists, Lorentz–Weyl algebra, and dispersion relations”, Phys. Rev. D, 99 (2019), 126012, 12 pp., arXiv: 1903.08679 | DOI | MR

[78] Meljanac D., Meljanac S., Pikutić D., “Families of vector-like deformations of relativistic quantum phase spaces, twists and symmetries”, Eur. Phys. J. C Part. Fields, 77 (2017), 830, 12 pp., arXiv: 1709.04745 | DOI | MR

[79] Meljanac D., Meljanac S., Pikutić D., Gupta K.S., “Twisted statistics and the structure of Lie-deformed Minkowski spaces”, Phys. Rev. D, 96 (2017), 105008, 6 pp., arXiv: 1703.09511 | DOI | MR

[80] Meljanac D., Meljanac S., Škoda Z., Štrajn R., “One parameter family of Jordanian twists”, SIGMA, 15 (2019), 082, 16 pp., arXiv: 1904.03993 | DOI | MR | Zbl

[81] Meljanac D., Meljanac S., Škoda Z., Štrajn R., “Interpolations between Jordanian twists, the Poincaré–Weyl algebra and dispersion relations”, Internat. J. Modern Phys. A, 35 (2020), 2050034, 15 pp., arXiv: 1911.03967 | DOI | MR

[82] Meljanac D., Meljanac S., Škoda Z., Štrajn R., “On interpolations between Jordanian twists”, Internat. J. Modern Phys. A, 35 (2020), 2050160, 13 pp., arXiv: 2003.01036 | DOI | MR

[83] Meljanac S., Krešić-Jurić S., “Generalized kappa-deformed spaces, star products and their realizations”, J. Phys. A: Math. Theor., 41 (2008), 235203, 24 pp., arXiv: 0804.3072 | DOI | MR | Zbl

[84] Meljanac S., Krešić-Jurić S., Stojić M., “Covariant realizations of kappa-deformed space”, Eur. Phys. J. C Part. Fields, 51 (2007), 229–240, arXiv: hep-th/0702215 | DOI | MR | Zbl

[85] Meljanac S., Meljanac D., Mercati F., Pikutić D., “Noncommutative spaces and Poincaré symmetry”, Phys. Lett. B, 766 (2017), 181–185, arXiv: 1610.06716 | DOI | Zbl

[86] Meljanac S., Meljanac D., Mignemi S., Štrajn R., “Snyder-type space-times, twisted Poincaré algebra and addition of momenta”, Internat. J. Modern Phys. A, 32 (2017), 1750172, 15 pp., arXiv: 1608.06207 | DOI | MR | Zbl

[87] Meljanac S., Meljanac D., Pachoł A., Pikutić D., “Remarks on simple interpolation between Jordanian twists”, J. Phys. A: Math. Theor., 50 (2017), 265201, 11 pp., arXiv: 1612.07984 | DOI | MR | Zbl

[88] Meljanac S., Meljanac D., Samsarov A., Stojić M., Lie algebraic deformations of Minkowski space with Poincaré algebra, arXiv: 0909.1706

[89] Meljanac S., Meljanac D., Samsarov A., Stojić M., “$\kappa$-deformed Snyder spacetime”, Modern Phys. Lett. A, 25 (2010), 579–590, arXiv: 0912.5087 | DOI | MR | Zbl

[90] Meljanac S., Meljanac D., Samsarov A., Stojić M., “$\kappa$ Snyder deformations of Minkowski spacetime, realizations, and Hopf algebra”, Phys. Rev. D, 83 (2011), 065009, 16 pp., arXiv: 1102.1655 | DOI

[91] Meljanac S., Mignemi S., “Associative realizations of the extended Snyder model”, Phys. Rev. D, 102 (2020), 126011, 9 pp., arXiv: 2007.13498 | DOI | MR

[92] Meljanac S., Mignemi S., “Associative realizations of $\kappa$-deformed extended Snyder model”, Phys. Rev. D, 104 (2021), 086006, 9 pp., arXiv: 2106.08131 | DOI | MR

[93] Meljanac S., Mignemi S., “Unification of $\kappa$-Minkowski and extended Snyder spaces”, Phys. Lett. B, 814 (2021), 136117, 5 pp., arXiv: 2101.05275 | DOI | MR | Zbl

[94] Meljanac S., Pachoł A., “Heisenberg doubles for :Snyder-type models”, Symmetry, 13:6 (2021), 1055, 13 pp., arXiv: 2101.02512 | DOI

[95] Meljanac S., Samsarov A., Stojić M., Gupta K.S., “$\kappa$-Minkowski spacetime and the star product realizations”, Eur. Phys. J. C Part. Fields, 53 (2008), 295–309, arXiv: 0705.2471 | DOI | MR | Zbl

[96] Meljanac S., Samsarov A., Štrajn R., “$\kappa$-deformation of phase space; generalized Poincaré algebras and $R$-matrix”, J. High Energy Phys., 2012:8 (2012), 127, 16 pp., arXiv: 1204.4324 | DOI | MR | Zbl

[97] Meljanac S., Stojić M., “New realizations of Lie algebra kappa-deformed Euclidean space”, Eur. Phys. J. C Part. Fields, 47 (2006), 531–539, arXiv: hep-th/0605133 | DOI | MR | Zbl

[98] Meljanac S., Škoda Z., “Hopf algebroid twists for deformation quantization of linear Poisson structures”, SIGMA, 14 (2018), 026, 23 pp., arXiv: 1605.01376 | DOI | MR | Zbl

[99] Meljanac S., Škoda Z., Svrtan D., “Exponential formulas and Lie algebra type star products”, SIGMA, 8 (2012), 013, 15 pp., arXiv: 1006.0478 | DOI | MR | Zbl

[100] Meljanac S., Škoda Z., Štrajn R., “Generalized Heisenberg algebra, realizations of the $\mathfrak{gl}(n)$ algebra and applications”, Rep. Math. Phys., 89 (2022), 131–140, arXiv: 2107.03111 | DOI | MR | Zbl

[101] Meljanac S., Štrajn R., “Exponential formulas, normal ordering and the Weyl–Heisenberg algebra”, SIGMA, 17 (2021), 084, 7 pp., arXiv: 2105.12593 | DOI | MR | Zbl

[102] Miao Y.-G., Wang X.-D., Yu S.-J., “Classical mechanics on noncommutative space with Lie-algebraic structure”, Ann. Physics, 326 (2011), 2091–2107, arXiv: 0911.5227 | DOI | MR | Zbl

[103] Mignemi S., “Doubly special relativity and translation invariance”, Phys. Lett. B, 672 (2009), 186–189, arXiv: 0808.1628 | DOI | MR

[104] Mignemi S., “The Snyder–de Sitter model from six dimensions”, Classical Quantum Gravity, 26 (2009), 245020, 9 pp. | DOI | MR | Zbl

[105] Mignemi S., “Doubly special relativity in de Sitter spacetime”, Ann. Phys., 522 (2010), 924–940, arXiv: 0802.1129 | DOI | MR

[106] Mignemi S., “Classical and quantum mechanics of the nonrelativistic Snyder model”, Phys. Rev. D, 84 (2011), 025021, 11 pp., arXiv: 1104.0490 | DOI | MR

[107] Mignemi S., “Classical and quantum mechanics of the nonrelativistic Snyder model in curved space”, Classical Quantum Gravity, 29 (2012), 215019, 19 pp., arXiv: 1110.0201 | DOI | MR | Zbl

[108] Mignemi S., Štrajn R., “Snyder dynamics in a Schwarzschild spacetime”, Phys. Rev. D, 90 (2014), 044019, 5 pp., arXiv: 1404.6396 | DOI

[109] Mignemi S., Štrajn R., “Quantum mechanics on a curved Snyder space”, Adv. High Energy Phys., 2016 (2016), 1328284, 6 pp., arXiv: 1501.01447 | DOI | MR | Zbl

[110] Nair V.P., Polychronakos A.P., “Quantum mechanics on the noncommutative plane and sphere”, Phys. Lett. B, 505 (2001), 267–274, arXiv: hep-th/0011172 | DOI | MR | Zbl

[111] Relancio J.J., “Geometry of multiparticle systems with a relativistic deformed kinematics and the relative locality principle”, Phys. Rev. D, 104 (2021), 024017, 13 pp., arXiv: 2105.12573 | DOI | MR

[112] Relancio J.J., Liberati S., “Towards a geometrical interpretation of rainbow geometries”, Classical Quantum Gravity, 38 (2021), 135028, 28 pp., arXiv: 2010.15734 | DOI | MR | Zbl

[113] Romero J.M., Zamora A., “Snyder noncommutative space-time from two-time physics”, Phys. Rev. D, 70 (2004), 105006, 5 pp., arXiv: hep-th/0408193 | DOI | MR

[114] Romero J.M., Zamora A., “The area quantum and Snyder space”, Phys. Lett. B, 661 (2008), 11–13, arXiv: 0802.1250 | DOI | MR | Zbl

[115] Ruan D., Jia Y., Ruan W., “Boson and differential realizations of polynomial angular momentum algebra”, J. Math. Phys., 42 (2001), 2718–2724 | DOI | MR | Zbl

[116] Snyder H.S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl

[117] Wess J., $q$-deformed Heisenberg algebras, arXiv: math-ph/9910013 | MR

[118] Yang C.N., “On quantized space-time”, Phys. Rev., 72 (1947), 874 | DOI | MR | Zbl

[119] Zakrzewski S., “Quantum Poincaré group related to the $\kappa$-Poincaré algebra”, J. Phys. A: Math. Gen., 27 (1994), 2075–2082 | DOI | MR | Zbl