On the Quantum K-Theory of the Quintic
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum K-theory of a smooth projective variety at genus zero is a collection of integers that can be assembled into a generating series $J(Q,q,t)$ that satisfies a system of linear differential equations with respect to $t$ and $q$-difference equations with respect to $Q$. With some mild assumptions on the variety, it is known that the full theory can be reconstructed from its small $J$-function $J(Q,q,0)$ which, in the case of Fano manifolds, is a vector-valued $q$-hypergeometric function. On the other hand, for the quintic $3$-fold we formulate an explicit conjecture for the small $J$-function and its small linear $q$-difference equation expressed linearly in terms of the Gopakumar–Vafa invariants. Unlike the case of quantum knot invariants, and the case of Fano manifolds, the coefficients of the small linear $q$-difference equations are not Laurent polynomials, but rather analytic functions in two variables determined linearly by the Gopakumar–Vafa invariants of the quintic. Our conjecture for the small $J$-function agrees with a proposal of Jockers–Mayr.
Keywords: quantum K-theory, quantum cohomology, quintic, Calabi–Yau manifolds, Gromov–Witten invariants, $q$-difference equations, $q$-Frobenius method, $J$-function, gauged linear $\sigma$ models, 3d-3d correspondence, Chern–Simons theory, $q$-holonomic functions.
Mots-clés : Gopakumar–Vafa invariants, reconstruction
@article{SIGMA_2022_18_a20,
     author = {Stavros Garoufalidis and Emanuel Scheidegger},
     title = {On the {Quantum} {K-Theory} of the {Quintic}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a20/}
}
TY  - JOUR
AU  - Stavros Garoufalidis
AU  - Emanuel Scheidegger
TI  - On the Quantum K-Theory of the Quintic
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a20/
LA  - en
ID  - SIGMA_2022_18_a20
ER  - 
%0 Journal Article
%A Stavros Garoufalidis
%A Emanuel Scheidegger
%T On the Quantum K-Theory of the Quintic
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a20/
%G en
%F SIGMA_2022_18_a20
Stavros Garoufalidis; Emanuel Scheidegger. On the Quantum K-Theory of the Quintic. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a20/

[1] Aganagic M., Vafa C., Large $N$ duality, mirror symmetry, and a $Q$-deformed $A$-polynomial for knots, arXiv: 1204.4709

[2] Almkvist G., van Enckevort C., van Straten D., Zudilin W., Tables of Calabi–Yau equations, arXiv: math.AG/0507430

[3] Andersen J. E., Kashaev R., “A TQFT from quantum Teichmüller theory”, Comm. Math. Phys., 330 (2014), 887–934, arXiv: 1109.6295 | DOI | MR | Zbl

[4] Andersen J. E., Kashaev R., “The Teichmüller TQFT”, Proceedings of the International Congress of Mathematicians, Invited Lectures (Rio de Janeiro 2018), v. III, World Sci. Publ., Hackensack, NJ, 2018, 2541–2565, arXiv: 1811.06853 | DOI | MR | Zbl

[5] Anderson D., Chen L., Tseng H. H., “On the finiteness of quantum K-theory of a homogeneous space”, Int. Math. Res. Not., 2022 (2022), 1313–1349, arXiv: 1804.04579 | DOI | MR | Zbl

[6] Beem C., Dimofte T., Pasquetti S., “Holomorphic blocks in three dimensions”, J. High Energy Phys., 2014:12 (2014), 177, 119 pp., arXiv: 1211.1986 | DOI | MR | Zbl

[7] Candelas P., de la Ossa X. C., Green P. S., Parkes L., “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nuclear Phys. B, 359 (1991), 21–74 | DOI | MR | Zbl

[8] Cooper D., Culler M., Gillet H., Long D. D., Shalen P. B., “Plane curves associated to character varieties of $3$-manifolds”, Invent. Math., 118 (1994), 47–84 | DOI | MR | Zbl

[9] Cox D. A., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, Amer. Math. Soc., Providence, RI, 1999 | DOI | MR | Zbl

[10] De Sole A., Kac V. G., “On integral representations of $q$-gamma and $q$-beta functions”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 16 (2005), 11–29, arXiv: math.QA/0302032 | MR | Zbl

[11] Dimofte T., “Complex Chern–Simons theory at level $k$ via the 3d-3d correspondence”, Comm. Math. Phys., 339 (2015), 619–662, arXiv: 1409.0857 | DOI | MR | Zbl

[12] Dimofte T., “Perturbative and nonperturbative aspects of complex Chern–Simons theory”, J. Phys. A: Math. Theor., 50 (2017), 443009, 25 pp., arXiv: 1608.02961 | DOI | MR | Zbl

[13] Dimofte T., Gaiotto D., Gukov S., “3-manifolds and 3d indices”, Adv. Theor. Math. Phys., 17 (2013), 975–1076, arXiv: 1112.5179 | DOI | MR | Zbl

[14] Dimofte T., Gaiotto D., Gukov S., “Gauge theories labelled by three-manifolds”, Comm. Math. Phys., 325 (2014), 367–419, arXiv: 1108.4389 | DOI | MR | Zbl

[15] Dimofte T., Gukov S., Hollands L., “Vortex counting and Lagrangian 3-manifolds”, Lett. Math. Phys., 98 (2011), 225–287 | DOI | MR | Zbl

[16] Faddeev L. D., “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34 (1995), 249–254 | DOI | MR | Zbl

[17] Garoufalidis S., “On the characteristic and deformation varieties of a knot”, Proceedings of the Casson Fest, Geom. Topol. Monogr., 7, Geom. Topol. Publ., Coventry, 2004, 291–309, arXiv: math.GT/0306230 | DOI | MR | Zbl

[18] Garoufalidis S., Kashaev R., “From state integrals to $q$-series”, Math. Res. Lett., 24 (2017), 781–801, arXiv: 1304.2705 | DOI | MR | Zbl

[19] Garoufalidis S., Lê T.T.Q., “The colored Jones function is $q$-holonomic”, Geom. Topol., 9 (2005), 1253–1293, arXiv: math.GT/0309214 | DOI | MR | Zbl

[20] Garoufalidis S., Zagier D., Knots, perturbative series and quantum modularity, arXiv: 2111.06645

[21] Garoufalidis S., Zagier D., Knots and their related $q$-series, in preparation

[22] Givental A., “On the WDVV equation in quantum $K$-theory”, Michigan Math. J., 48 (2000), 295–304, arXiv: math.AG/0003158 | DOI | MR | Zbl

[23] Givental A., Permutation-equivariant quantum K-theory V Toric $q$-hypergeometric functions, arXiv: 1509.03903

[24] Givental A., Permutation-equivariant quantum K-theory VIII Explicit reconstruction, arXiv: 1510.06116

[25] Givental A., “Explicit reconstruction in quantum cohomology and K-theory”, Ann. Fac. Sci. Toulouse Math., 25 (2016), 419–432, arXiv: 1506.06431 | DOI | MR | Zbl

[26] Givental A., Lee Y.-P., “Quantum $K$-theory on flag manifolds, finite-difference Toda lattices and quantum groups”, Invent. Math., 151 (2003), 193–219, arXiv: math.AG/0108105 | DOI | MR | Zbl

[27] Givental A., Tonita V., “The Hirzebruch–Riemann–Roch theorem in true genus-0 quantum K-theory”, Symplectic, Poisson, and noncommutative geometry Math. Sci. Res. Inst. Publ., 62, Cambridge University Press, New York, 2014, 43–91, arXiv: 1106.3136 | MR | Zbl

[28] Iritani H., Milanov T., Tonita V., “Reconstruction and convergence in quantum $K$-theory via difference equations”, Int. Math. Res. Not., 2015 (2015), 2887–2937, arXiv: 1309.3750 | DOI | MR | Zbl

[29] Jockers H., Mayr P., “Quantum K-theory of Calabi–Yau manifolds”, J. High Energy Phys., 2019:011 (2019), 20 pp., arXiv: 1905.03548 | DOI | MR | Zbl

[30] Jockers H., Mayr P., “A 3d gauge theory/quantum K-theory correspondence”, Adv. Theor. Math. Phys., 24 (2020), 327–457, arXiv: 1808.02040 | DOI | MR | Zbl

[31] Kashaev R., Luo F., Vartanov G., “A TQFT of Turaev–Viro type on shaped triangulations”, Ann. Henri Poincaré, 17 (2016), 1109–1143, arXiv: 1210.8393 | DOI | MR | Zbl

[32] Kashaev R. M., “A link invariant from quantum dilogarithm”, Modern Phys. Lett. A, 10 (1995), 1409–1418, arXiv: q-alg/9504020 | DOI | MR | Zbl

[33] Lee Y.-P., “Quantum $K$-theory. I Foundations”, Duke Math. J., 121 (2004), 389–424, arXiv: math.AG/0105014 | DOI | MR | Zbl

[34] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[35] Petkovšek M., Wilf H. S., Zeilberger D., $A=B$, Wellesley, MA, A.K. Peters Ltd., 1996 | Zbl

[36] Reshetikhin N., Turaev V. G., “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597 | DOI | MR | Zbl

[37] Taipale K., “K-theoretic J-functions of type A flag varieties”, Int. Math. Res. Not., 2013 (2013), 3647–3677, arXiv: 1110.3117 | DOI | MR | Zbl

[38] Tonita V., “Twisted K-theoretic Gromov–Witten invariants”, Math. Ann., 372 (2018), 489–526, arXiv: 1508.05976 | DOI | MR | Zbl

[39] Turaev V. G., Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, 18, Walter de Gruyter Co., Berlin, 1994 | DOI | MR | Zbl

[40] Wen Y., Difference equation for quintic 3-fold, arXiv: 2011.07527

[41] Wilf H. S., Zeilberger D., “An algorithmic proof theory for hypergeometric (ordinary and "$q$") multisum/integral identities”, Invent. Math., 108 (1992), 575–633 | DOI | MR

[42] Witten E., “Quantum field theory and the Jones polynomial”, Comm. Math. Phys., 121 (1989), 351–399 | DOI | MR | Zbl

[43] Zeilberger D., “A holonomic systems approach to special functions identities”, J. Comput. Appl. Math., 32 (1990), 321–368 | DOI | MR | Zbl