@article{SIGMA_2022_18_a2,
author = {Eric J. Pap and Dani\"el Boer and Holger Waalkens},
title = {A {Unified} {View} on {Geometric} {Phases} and {Exceptional} {Points} in {Adiabatic} {Quantum} {Mechanics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a2/}
}
TY - JOUR AU - Eric J. Pap AU - Daniël Boer AU - Holger Waalkens TI - A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a2/ LA - en ID - SIGMA_2022_18_a2 ER -
%0 Journal Article %A Eric J. Pap %A Daniël Boer %A Holger Waalkens %T A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a2/ %G en %F SIGMA_2022_18_a2
Eric J. Pap; Daniël Boer; Holger Waalkens. A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a2/
[1] Aharonov Y., Anandan J., “Phase change during a cyclic quantum evolution”, Phys. Rev. Lett., 58 (1987), 1593–1596 | DOI | MR
[2] Anandan J., Aharonov Y., “Geometry of quantum evolution”, Phys. Rev. Lett., 65 (1990), 1697–1700 | DOI | MR | Zbl
[3] Berry M. V., “Quantal phase factors accompanying adiabatic changes”, Proc. Roy. Soc. London Ser. A, 392 (1984), 45–57 | DOI | MR | Zbl
[4] Berry M. V., “The quantum phase, five years after”, Geometric Phases in Physics, Adv. Ser. Math. Phys., 5, eds. A. Shapere, F. Wilczeck, World Sci. Publ., Teaneck, NJ, 1989, 7–28
[5] Berry M. V., Uzdin R., “Slow non-Hermitian cycling: exact solutions and the Stokes phenomenon”, J. Phys. A: Math. Theor., 44 (2011), 435303, 26 pp. | DOI | Zbl
[6] Berry M. V., Wilkinson M., “Diabolical points in the spectra of triangles”, Proc. Roy. Soc. London Ser. A, 392 (1984), 15–43 | DOI | MR | Zbl
[7] Born M., Fock V., “Beweis des Adiabatensatzes”, Z. Phys., 51 (1928), 165–180 | DOI | Zbl
[8] Chruściński D., Jamiołkowski A., Geometric phases in classical and quantum mechanics, Progress in Mathematical Physics, 36, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | Zbl
[9] Cohen E., Larocque H., Bouchard F., Nejadsattari F., Gefen Y., Karimi E., “Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond”, Nature Rev. Phys., 1 (2019), 437–449, arXiv: 1912.12596 | DOI
[10] Cui X.-D., Zheng Y., “Geometric phases in non-Hermitian quantum mechanics”, Phys. Rev. A, 86 (2012), 064104, 4 pp. | DOI
[11] Cui X.-D., Zheng Y., “Unification of the family of Garrison–Wright's phases”, Sci. Rep., 4 (2014), 5813, 8 pp. | DOI
[12] Garrison J. C., Wright E. M., “Complex geometrical phases for dissipative systems”, Phys. Lett. A, 128 (1988), 177–181 | DOI | MR
[13] Heiss W. D., “Phases of wave functions and level repulsion”, Eur. Phys. J. D, 7 (1999), 1–4, arXiv: quant-ph/9901023 | DOI
[14] Heiss W. D., “The physics of exceptional points”, J. Phys. A: Math. Theor., 45 (2012), 444016, 11 pp., arXiv: 1210.7536 | DOI | Zbl
[15] Höller J., Read N., Harris J. G. E., “Non-Hermitian adiabatic transport in spaces of exceptional points”, Phys. Rev. A, 102 (2020), 032216, 9 pp., arXiv: 1809.07175 | DOI | MR
[16] Kato T., “On the adiabatic theorem of quantum mechanics”, J. Phys. Soc. Japan, 5 (1950), 435–439 | DOI
[17] Kato T., Perturbation theory for linear operators, Grundleheren der Mathematischen Wissenschaften, 132, Springer, Berlin – Heidelberg, 1966 | DOI | Zbl
[18] Lee J. M., Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, New York, 2012 | DOI
[19] Mandel A., Gonçalves J. Z., “Construction of open sets of free $k$-tuples of matrices”, Proc. Edinburgh Math. Soc., 30 (1987), 121–131 | DOI | MR | Zbl
[20] Manini N., Pistolesi F., “Off-diagonal geometric phases”, Phys. Rev. Lett., 85 (2000), 3067–3071, arXiv: quant-ph/9911083 | DOI
[21] Mehri-Dehnavi H., Mostafazadeh A., “Geometric phase for non-Hermitian Hamiltonians and its holonomy interpretation”, J. Math. Phys., 49 (2008), 082105, 17 pp., arXiv: 0807.3405 | DOI | MR | Zbl
[22] Milburn T. J., Doppler J., Holmes C. A., Portolan S., Rotter S., Rabl P., “General description of quasiadiabatic dynamical phenomena near exceptional points”, Phys. Rev. A, 92 (2015), 052124, 12 pp., arXiv: 1410.1882 | DOI
[23] Miri M.-A., Alù A., “Exceptional points in optics and photonics”, Science, 363 (2019), 42 pp. | DOI | Zbl
[24] Mostafazadeh A., “Exact $PT$-symmetry is equivalent to Hermiticity”, J. Phys. A: Math. Gen., 36 (2003), 7081–7091, arXiv: quant-ph/0304080 | DOI | Zbl
[25] Nenciu G., Rasche G., “On the adiabatic theorem for nonselfadjoint Hamiltonians”, J. Phys. A: Math. Gen., 25 (1992), 5741–5751 | DOI | MR
[26] Pancharatnam S., “Generalized theory of interference, and its applications. I Coherent pencils”, Proc. Indian Acad. Sci. Sect. A, 44 (1956), 247–262 | DOI | MR
[27] Pap E. J., Boer D., Waalkens H., “Non-Abelian nature of systems with multiple exceptional points”, Phys. Rev. A, 98 (2018), 023818, 9 pp., arXiv: 1805.04291 | DOI
[28] Pap E. J., Waalkens H., Frames of group-sets and their application in bundle theory, arXiv: 2010.03913
[29] Pati A. K., “Relation between “phases” and “distance” in quantum evolution”, Phys. Lett. A, 159 (1991), 105–112 | DOI | MR
[30] Provost J. P., Vallee G., “Riemannian structure on manifolds of quantum states”, Comm. Math. Phys., 76 (1980), 289–301 | DOI | MR | Zbl
[31] Shapere A., Wilczek F. (eds.), Geometric phases in physics, Advanced Series in Mathematical Physics, 5, World Sci. Publ. Co., Inc., Teaneck, NJ, 1989 | DOI | MR | Zbl
[32] Simon B., “Holonomy, the quantum adiabatic theorem, and Berry's phase”, Phys. Rev. Lett., 51 (1983), 2167–2170 | DOI | MR
[33] Tanaka A., Cheon T., “Bloch vector, disclination and exotic quantum holonomy”, Phys. Lett. A, 379 (2015), 1693–1698, arXiv: 1409.5211 | DOI | Zbl
[34] Tanaka A., Cheon T., “Path topology dependence of adiabatic time evolution”, Functional Analysis and Operator Theory for Quantum Physics, EMS Ser. Congr. Rep., eds. J. Dittrich, H. Kovařík, A. Laptev, Eur. Math. Soc., Zürich, 2017, 531–542, arXiv: 1512.06983 | DOI | Zbl
[35] Tanaka A., Cheon T., Kim S. W., “Gauge invariants of eigenspace and eigenvalue anholonomies: examples in hierarchical quantum circuits”, J. Phys. A: Math. Theor., 45 (2012), 335305, 20 pp., arXiv: 1203.5412 | DOI | Zbl
[36] Uzdin R., Mailybaev A., Moiseyev N., “On the observability and asymmetry of adiabatic state flips generated by exceptional points”, J. Phys. A: Math. Theor., 44 (2011), 435302, 8 pp. | DOI | MR | Zbl
[37] Wilczek F., Zee A., “Appearance of gauge structure in simple dynamical systems”, Phys. Rev. Lett., 52 (1984), 2111–2114 | DOI | MR
[38] Wojcik C. C., Sun X.-Q., Bzdušek T., Fan S., “Homotopy characterization of non-Hermitian Hamiltonians”, Phys. Rev. B, 101 (2020), 205417, 17 pp., arXiv: 1911.12748 | DOI
[39] Xu H., Mason D., Jiang L., Harris J. G. E., “Topological energy transfer in an optomechanical system with exceptional points”, Nature, 537 (2016), 80–83, arXiv: 1602.06881 | DOI
[40] Zhang D.-J., Wang Q.-H., Gong J., “Quantum geometric tensor in PT-symmetric quantum mechanics”, Phys. Rev. A, 99 (2018), 042104, 13 pp., arXiv: 1811.04638 | DOI