Mots-clés : deformation quantization, Lie bialgebroids
@article{SIGMA_2022_18_a19,
author = {Kevin Morand},
title = {A {Note} on {Multi-Oriented} {Graph} {Complexes} and {Deformation} {Quantization} of {Lie} {Bialgebroids}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a19/}
}
TY - JOUR AU - Kevin Morand TI - A Note on Multi-Oriented Graph Complexes and Deformation Quantization of Lie Bialgebroids JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a19/ LA - en ID - SIGMA_2022_18_a19 ER -
Kevin Morand. A Note on Multi-Oriented Graph Complexes and Deformation Quantization of Lie Bialgebroids. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a19/
[1] Alexandrov M., Schwarz A., Zaboronsky O., Kontsevich M., “The geometry of the master equation and topological quantum field theory”, Internat. J. Modern Phys. A, 12 (1997), 1405–1429, arXiv: hep-th/9502010 | DOI | MR | Zbl
[2] Antunes P., Nunes da Costa J. M., “Split Courant algebroids as $L_\infty$-structures”, J. Geom. Phys., 155 (2020), 103790, 19 pp., arXiv: 1912.09791 | DOI | MR | Zbl
[3] Bangoura M., Kosmann-Schwarzbach Y., “The double of a Jacobian quasi-bialgebra”, Lett. Math. Phys., 28 (1993), 13–29 | DOI | MR | Zbl
[4] Bar-Natan D., “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl
[5] Basile T., Lejay D., Morand K., Categories enriched over oplax monoidal categories, in preparation
[6] Calaque D., “Formality for Lie algebroids”, Comm. Math. Phys., 257 (2005), 563–578, arXiv: math.QA/0404265 | DOI | MR | Zbl
[7] Cornalba L., Schiappa R., “Nonassociative star product deformations for D-brane world-volumes in curved backgrounds”, Comm. Math. Phys., 225 (2002), 33–66, arXiv: hep-th/0101219 | DOI | MR | Zbl
[8] Courant T., “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl
[9] Courant T., Weinstein A., “Beyond Poisson structures”, Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, 1986), Travaux en Cours, 27, Hermann, Paris, 1988, 39–49 https://math.berkeley.edu/ãlanw/Beyond.pdf | MR
[10] Dito G., “The necessity of wheels in universal quantization formulas”, Comm. Math. Phys., 338 (2015), 523–532, arXiv: 1308.4386 | DOI | MR | Zbl
[11] Dolgushev V. A., Erratum to “A proof of Tsygan's formality conjecture for an arbitrary smooth manifold”, arXiv: math.QA/0703113 | MR
[12] Dolgushev V. A., Stable formality quasi-isomorphisms for Hochschild cochains, arXiv: 1109.6031 | MR
[13] Dolgushev V. A., Rogers C. L., “The cohomology of the full directed graph complex”, Algebr. Represent. Theory, 23 (2020), 917–961, arXiv: 1711.04701 | DOI | MR | Zbl
[14] Dolgushev V. A., Rogers C. L., Willwacher T. H., “Kontsevich's graph complex, GRT, and the deformation complex of the sheaf of polyvector fields”, Ann. of Math., 182 (2015), 855–943, arXiv: 1211.4230 | DOI | MR | Zbl
[15] Dorfman I.Ya., “Dirac structures of integrable evolution equations”, Phys. Lett. A, 125 (1987), 240–246 | DOI | MR
[16] Drinfeld V. G., “Quasi-Hopf algebras”, Leningrad Math. J., 1 (1990), 1419–1457 | MR | Zbl
[17] Drinfeld V. G., “On quasitriangular quasi-{H}opf algebras and on a group that is closely connected with $\mathrm{Gal}(\overline{\mathbb Q}/\mathbb Q)$”, Leningrad Math. J., 2 (1991), 829–860 | MR | Zbl
[18] Drinfeld V. G., “On some unsolved problems in quantum group theory”, Quantum Groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 1–8 | DOI | MR
[19] Enriquez B., Halbout G., “Quantization of quasi-Lie bialgebras”, J. Amer. Math. Soc., 23 (2010), 611–653, arXiv: 0804.0496 | DOI | MR | Zbl
[20] Etingof P., Kazhdan D., “Quantization of Lie bialgebras. I”, Selecta Math. (N.S.), 2 (1996), 1–41, arXiv: q-alg/9506005 | DOI | MR | Zbl
[21] Fedosov B. V., “A simple geometrical construction of deformation quantization”, J. Differential Geom., 40 (1994), 213–238 | DOI | MR | Zbl
[22] Frégier Y., Zambon M., “Simultaneous deformations and Poisson geometry”, Compos. Math., 151 (2015), 1763–1790, arXiv: 1202.2896 | DOI | MR | Zbl
[23] Gerstenhaber M., “The cohomology structure of an associative ring”, Ann. of Math., 78 (1963), 267–288 | DOI | MR | Zbl
[24] Getzler E., “Lie theory for nilpotent $L_\infty$-algebras”, Ann. of Math., 170 (2009), 271–301, arXiv: math.AT/0404003 | DOI | MR | Zbl
[25] Ginot G., Yalin S., Deformation theory of bialgebras, higher Hochschild cohomology and formality, arXiv: 1606.01504 | MR
[26] Groenewold H. J., “On the principles of elementary quantum mechanics”, Physica, 12 (1946), 405–460 | DOI | MR | Zbl
[27] Grothendieck A., “Esquisse d'un programme”, Geometric Galois Actions, 1, London Math. Soc. Lecture Note Ser., 242, Cambridge University Press, Cambridge, 1997, 5–48 | MR | Zbl
[28] Hinich V., Lemberg D., “Formality theorem and bialgebra deformations”, Ann. Fac. Sci. Toulouse Math., 25 (2016), 569–582, arXiv: 1410.2132 | DOI | MR | Zbl
[29] Jost C., “Globalizing $L_\infty$-automorphisms of the Schouten algebra of polyvector fields”, Differential Geom. Appl., 31 (2013), 239–247, arXiv: 1201.1392 | DOI | MR | Zbl
[30] Khoroshkin A., Willwacher T., Živković M., “Differentials on graph complexes”, Adv. Math., 307 (2017), 1184–1214, arXiv: 1411.2369 | DOI | MR | Zbl
[31] Klimčík C., Strobl T., “WZW-Poisson manifolds”, J. Geom. Phys., 43 (2002), 341–344, arXiv: math.SG/0104189 | DOI | MR | Zbl
[32] Kontsevich M., “Formality conjecture”, Deformation Theory and Symplectic Geometry (Ascona, 1996), Math. Phys. Stud., 20, Kluwer Acad. Publ., Dordrecht, 1997, 139–156 https://www.ihes.fr/m̃axim/TEXTS/Formalityconjecture.pdf | MR | Zbl
[33] Kontsevich M., “Operads and motives in deformation quantization”, Lett. Math. Phys., 48 (1999), 35–72, arXiv: math.QA/9904055 | DOI | MR | Zbl
[34] Kontsevich M., “Deformation quantization of Poisson manifolds”, Lett. Math. Phys., 66 (2003), 157–216, arXiv: q-alg/9709040 | DOI | MR | Zbl
[35] Kosmann-Schwarzbach Y., “Jacobian quasi-bialgebras and quasi-Poisson Lie groups”, Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., 132, eds. M. Gotay, J.E. Marsden, V. Moncrief, Amer. Math. Soc., Providence, RI, 1992, 459–489 | DOI | MR
[36] Kosmann-Schwarzbach Y., “Exact Gerstenhaber algebras and Lie bialgebroids”, Acta Appl. Math., 41 (1995), 153–165 | DOI | MR | Zbl
[37] Kosmann-Schwarzbach Y., “Quasi, twisted, and all that $\dots$ in Poisson geometry and Lie algebroid theory”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 363–389, arXiv: math.SG/0310359 | DOI | MR | Zbl
[38] Lang H., Sheng Y., Xu X., “Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids”, Lett. Math. Phys., 107 (2017), 861–885, arXiv: 1312.4609 | DOI | MR | Zbl
[39] Lecomte P. B.A., Roger C., “Modules et cohomologies des bigèbres de Lie”, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 405–410 | MR | Zbl
[40] Liu Z.-J., Weinstein A., Xu P., “Manin triples for Lie bialgebroids”, J. Differential Geom., 45 (1997), 547–574, arXiv: dg-ga/9508013 | DOI | MR | Zbl
[41] Loday J.-L., Vallette B., Algebraic operads, Grundlehren der mathematischen Wissenschaften, 346, Springer, Heidelberg, 2012 | DOI | MR | Zbl
[42] Mackenzie K. C.H., Xu P., “Lie bialgebroids and Poisson groupoids”, Duke Math. J., 73 (1994), 415–452 | DOI | MR | Zbl
[43] Markl M., “Intrinsic brackets and the $L_\infty$-deformation theory of bialgebras”, J. Homotopy Relat. Struct., 5 (2010), 177–212, arXiv: math.AT/0411456 | MR | Zbl
[44] Mehta R. A., Supergroupoids, double structures, and equivariant cohomology, Ph.D. Thesis, university of California, Berkeley, 2006, arXiv: math.DG/0605356 | MR
[45] Merkulov S., Exotic automorphisms of the Schouten algebra of polyvector fields, arXiv: 0809.2385
[46] Merkulov S., “Operads, configuration spaces and quantization”, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 683–781, arXiv: 1005.3381 | DOI | MR | Zbl
[47] Merkulov S., “Multi-oriented props and homotopy algebras with branes”, Lett. Math. Phys., 110 (2020), 1425–1475, arXiv: 1712.09268 | DOI | MR | Zbl
[48] Merkulov S., “Grothendieck–Teichmüller group, operads and graph complexes: a survey”, Integrability, Quantization, and Geometry II Quantum Theories and Algebraic Geometry, Proc. Sympos. Pure Math., 103, Amer. Math. Soc., Providence, RI, 2021, 383–445, arXiv: 1904.13097 | MR | Zbl
[49] Merkulov S., Vallette B., “Deformation theory of representations of prop(erad)s. I”, J. Reine Angew. Math., 634 (2009), 51–106, arXiv: 0707.0889 | DOI | MR | Zbl
[50] Merkulov S., Willwacher T., “An explicit two step quantization of Poisson structures and Lie bialgebras”, Comm. Math. Phys., 364 (2018), 505–578, arXiv: 1612.00368 | DOI | MR | Zbl
[51] Merkulov S., Willwacher T., “Classification of universal formality maps for quantizations of Lie bialgebras”, Compos. Math., 156 (2020), 2111–2148, arXiv: 1605.01282 | DOI | MR | Zbl
[52] Moerdijk I., Mrčun J., “On the universal enveloping algebra of a Lie algebroid”, Proc. Amer. Math. Soc., 138 (2010), 3135–3145, arXiv: 0801.3929 | DOI | MR | Zbl
[53] Morand K., M. Kontsevich's graph complexes and universal structures on graded symplectic manifolds I, arXiv: 1908.08253
[54] Moyal J. E., “Quantum mechanics as a statistical theory”, Proc. Cambridge Philos. Soc., 45 (1949), 99–124 | DOI | MR | Zbl
[55] Nest R., Tsygan B., “Formal deformations of symplectic manifolds with boundary”, J. Reine Angew. Math., 481 (1996), 27–54 | DOI | MR | Zbl
[56] Penkava M., Vanhaecke P., “Deformation quantization of polynomial Poisson algebras”, J. Algebra, 227 (2000), 365–393, arXiv: math.QA/9804022 | DOI | MR | Zbl
[57] Quillen D., “Rational homotopy theory”, Ann. of Math., 90 (1969), 205–295 | DOI | MR | Zbl
[58] Roytenberg D., Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. Thesis, University of California, Berkeley, 1999, arXiv: math.DG/9910078 | MR
[59] Roytenberg D., “On the structure of graded symplectic supermanifolds and Courant algebroids”, Quantization, Poisson Brackets and Beyond (Manchester, 2001), Contemp. Math., 315, Amer. Math. Soc., Providence, RI, 2002, 169–185, arXiv: math.SG/0203110 | DOI | MR | Zbl
[60] Roytenberg D., “Quasi-Lie bialgebroids and twisted Poisson manifolds”, Lett. Math. Phys., 61 (2002), 123–137, arXiv: math.QA/0112152 | DOI | MR | Zbl
[61] Sakáloš Š, Ševera P., “On quantization of quasi-Lie bialgebras”, Selecta Math. (N.S.), 21 (2015), 649–725, arXiv: 1304.6382 | DOI | MR | Zbl
[62] Ševera P., Some title containing the words “homotopy” and “symplectic”, e.g. this one, arXiv: math.SG/0105080 | MR
[63] Ševera P., Letters to Alan Weinstein about Courant algebroids, arXiv: 1707.00265
[64] Ševera P., Weinstein A., “Poisson geometry with a 3-form background”, Progr. Theoret. Phys. Suppl., 144 (2001), 145–154, arXiv: math.SG/0107133 | DOI | MR
[65] Shoikhet B., “An $L_\infty$ algebra structure on polyvector fields”, Selecta Math. (N.S.), 24 (2018), 1691–1728, arXiv: 0805.3363 | DOI | MR | Zbl
[66] Tamarkin D., “Quantization of Lie bialgebras via the formality of the operad of little disks”, Geom. Funct. Anal., 17 (2007), 537–604 | DOI | MR | Zbl
[67] Vaintrob A.Yu., “Lie algebroids and homological vector fields”, Russian Math. Surveys, 52 (1997), 428–429 | DOI | MR | Zbl
[68] Vysoký J., “Hitchhiker's guide to Courant algebroid relations”, J. Geom. Phys., 151 (2020), 103635, 33 pp., arXiv: 1910.05347 | DOI | MR | Zbl
[69] Willwacher T., The Grothendieck–Teichmüller group, Unpublished notes, 2014 https://people.math.ethz.ch/w̃ilthoma/docs/grt.pdf
[70] Willwacher T., “The obstruction to the existence of a loopless star product”, C. R. Math. Acad. Sci. Paris, 352 (2014), 881–883, arXiv: 1309.7921 | DOI | MR | Zbl
[71] Willwacher T., “M. Kontsevich's graph complex and the Grothendieck–Teichmüller Lie algebra”, Invent. Math., 200 (2015), 671–760, arXiv: 1009.1654 | DOI | MR | Zbl
[72] Willwacher T., “The oriented graph complexes”, Comm. Math. Phys., 334 (2015), 1649–1666, arXiv: 1308.4006 | DOI | MR | Zbl
[73] Willwacher T., Deformation quantization and the Gerstenhaber structure on the homology of knot spaces, arXiv: 1506.07078
[74] Xu P., “Quantum groupoids and deformation quantization”, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 289–294, arXiv: q-alg/9708020 | DOI | MR | Zbl
[75] Xu P., “Gerstenhaber algebras and BV-algebras in Poisson geometry”, Comm. Math. Phys., 200 (1999), 545–560, arXiv: dg-ga/9703001 | DOI | MR | Zbl
[76] Xu P., “Quantum groupoids”, Comm. Math. Phys., 216 (2001), 539–581, arXiv: math.QA/9905192 | DOI | MR | Zbl
[77] Živković M., “Multi-directed graph complexes and quasi-isomorphisms between them I: oriented graphs”, High. Struct., 4 (2020), 266–283, arXiv: 1703.09605 | MR
[78] Živković M., “Multi-directed graph complexes and quasi-isomorphisms between them II: sourced graphs”, Int. Math. Res. Not., 2021 (2021), 948–1004, arXiv: 1712.01203 | DOI | MR