@article{SIGMA_2022_18_a18,
author = {Carlos Valero and Raymond G. McLenaghan},
title = {Classification of the {Orthogonal} {Separable} {Webs} for the {Hamilton{\textendash}Jacobi} and {Klein{\textendash}Gordon} {Equations} on {3-Dimensional} {Minkowski} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a18/}
}
TY - JOUR AU - Carlos Valero AU - Raymond G. McLenaghan TI - Classification of the Orthogonal Separable Webs for the Hamilton–Jacobi and Klein–Gordon Equations on 3-Dimensional Minkowski Space JO - Symmetry, integrability and geometry: methods and applications PY - 2022 VL - 18 UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a18/ LA - en ID - SIGMA_2022_18_a18 ER -
%0 Journal Article %A Carlos Valero %A Raymond G. McLenaghan %T Classification of the Orthogonal Separable Webs for the Hamilton–Jacobi and Klein–Gordon Equations on 3-Dimensional Minkowski Space %J Symmetry, integrability and geometry: methods and applications %D 2022 %V 18 %U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a18/ %G en %F SIGMA_2022_18_a18
Carlos Valero; Raymond G. McLenaghan. Classification of the Orthogonal Separable Webs for the Hamilton–Jacobi and Klein–Gordon Equations on 3-Dimensional Minkowski Space. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a18/
[1] Benenti S., “Special symmetric two-tensors, equivalent dynamical systems, cofactor and bi-cofactor systems”, Acta Appl. Math., 87 (2005), 33–91 | DOI | MR | Zbl
[2] Benenti S., Chanu C., Rastelli G., “Remarks on the connection between the additive separation of the Hamilton–Jacobi equation and the multiplicative separation of the Schrödinger equation. I The completeness and Robertson conditions”, J. Math. Phys., 43 (2002), 5183–5222 | DOI | MR | Zbl
[3] Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894
[4] Bruce A. T., McLenaghan R. G., Smirnov R. G., “A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables”, J. Geom. Phys., 39 (2001), 301–322 | DOI | MR | Zbl
[5] Cochran C. M., McLenaghan R. G., Smirnov R. G., “Equivalence problem for the orthogonal webs on the 3-sphere”, J. Math. Phys., 52 (2011), 053509, 22 pp., arXiv: 1009.4244 | DOI | MR | Zbl
[6] Cochran C. M., McLenaghan R. G., Smirnov R. G., “Equivalence problem for the orthogonal separable webs in 3-dimensional hyperbolic space”, J. Math. Phys., 58 (2017), 063513, 43 pp. | DOI | MR | Zbl
[7] Crampin M., “Conformal Killing tensors with vanishing torsion and the separation of variables in the Hamilton–Jacobi equation”, Differential Geom. Appl., 18 (2003), 87–102 | DOI | MR | Zbl
[8] Crampin M., “Concircular vector fields and special conformal Killing tensors”, Differential Geometric Methods in Mechanics and Field Theory, Academia Press, Gent, 2007, 57–70
[9] Eisenhart L. P., “Separable systems of Stackel”, Ann. of Math., 35 (1934), 284–305 | DOI | MR
[10] Hinterleitner F., “Examples of separating coordinates for the Klein–Gordon equation in $(2+1)$-dimensional flat space-time”, J. Math. Phys., 37 (1996), 3032–3040 | DOI | MR | Zbl
[11] Hinterleitner F., “Global properties of orthogonal separable coordinates for the Klein–Gordon equation in $(2+1)$-dimensional flat space-time”, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II, 207 (1998), 133–171 | MR | Zbl
[12] Horwood J. T., “On the theory of algebraic invariants of vector spaces of Killing tensors”, J. Geom. Phys., 58 (2008), 487–501 | DOI | MR | Zbl
[13] Horwood J. T., McLenaghan R. G., “Transformation to pseudo-Cartesian coordinates in locally flat pseudo-Riemannian spaces”, J. Geom. Phys., 57 (2007), 1435–1440 | DOI | MR | Zbl
[14] Horwood J. T., McLenaghan R. G., “Orthogonal separation of variables for the Hamilton–Jacobi and wave equations in three-dimensional Minkowski space”, J. Math. Phys., 49 (2008), 023501, 48 pp. | DOI | MR | Zbl
[15] Horwood J. T., McLenaghan R. G., Smirnov R. G., “Hamilton–Jacobi theory in three-dimensional Minkowski space via Cartan geometry”, J. Math. Phys., 50 (2009), 053507, 41 pp. | DOI | MR | Zbl
[16] Kalnins E. G., “On the separation of variables for the Laplace equation $\Delta \Psi +K^{2}\Psi =0$ in two- and three-dimensional Minkowski space”, SIAM J. Math. Anal., 6 (1975), 340–374 | DOI | MR | Zbl
[17] Kalnins E. G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific Technical, Harlow; John Wiley Sons, Inc., New York, 1986 | MR | Zbl
[18] Kalnins E. G., Kress J. M., Miller Jr. W., Separation of variables and superintegrability. The symmetry of solvable systems, IOP Expanding Physics, IOP Publishing, Bristol, 2018 | DOI | MR | Zbl
[19] Kalnins E. G., Miller Jr. W., “Lie theory and separation of variables. IX Orthogonal $R$-separable coordinate systems for the wave equation $\psi_{tt}-\Delta^{2}\psi =0$”, J. Math. Phys., 17 (1976), 331–355 | DOI | MR | Zbl
[20] Kalnins E. G., Miller Jr. W., “Separation of variables on $n$-dimensional Riemannian manifolds. I The $n$-sphere $S_n$ and Euclidean $n$-space $R^n$”, J. Math. Phys., 27 (1986), 1721–1736 | DOI | MR | Zbl
[21] McLenaghan R. G., Rastelli G., Valero C., “Complete separability of the Hamilton–Jacobi equation for the charged particle orbits in a Liénard–Wiechert field”, J. Math. Phys., 61 (2020), 122903, 29 pp. | DOI | MR | Zbl
[22] McLenaghan R. G., Smirnov R. G., “Intrinsic characterizations of orthogonal separability for natural Hamiltonians with scalar potentials on pseudo-Riemannian spaces”, J. Nonlinear Math. Phys., 9:1 (2002), 140–151 | DOI | MR | Zbl
[23] McLenaghan R. G., Smirnov R. G., The D., “An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics”, J. Math. Phys., 45 (2004), 1079–1120 | DOI | MR | Zbl
[24] Olevsky M. N., “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2 u + \lambda u = 0$ admits complete separation of variables”, Math. USSR. Sb., 27 (1950), 379–427 | MR
[25] Rajaratnam K., Orthogonal separation of the Hamilton–Jacobi equation on spaces of constant curvature, Master's Thesis, University of Waterloo, 2014 http://hdl.handle.net/10012/8350 | MR
[26] Rajaratnam K., McLenaghan R. G., “Classification of Hamilton–Jacobi separation in orthogonal coordinates with diagonal curvature”, J. Math. Phys., 55 (2014), 083521, 16 pp., arXiv: 1404.2565 | DOI | MR | Zbl
[27] Rajaratnam K., McLenaghan R. G., “Killing tensors, warped products and the orthogonal separation of the Hamilton–Jacobi equation”, J. Math. Phys., 55 (2014), 013505, 27 pp., arXiv: 1404.3161 | DOI | MR | Zbl
[28] Rajaratnam K., McLenaghan R. G., Valero C., “Orthogonal separation of the Hamilton–Jacobi equation on spaces of constant curvature”, SIGMA, 12 (2016), 117, 30 pp., arXiv: 1607.00712 | DOI | MR | Zbl
[29] Robertson H. P., “Bemerkung über separierbare Systeme in der Wellenmechanik”, Math. Ann., 98 (1928), 749–752 | DOI | MR | Zbl
[30] Smirnov R. G., Yue J., “Covariants, joint invariants and the problem of equivalence in the invariant theory of Killing tensors defined in pseudo-Riemannian spaces of constant curvature”, J. Math. Phys., 45 (2004), 4141–4163, arXiv: math-ph/0407028 | DOI | MR | Zbl
[31] Valero C., McLenaghan R. G., “Classification of the orthogonal separable webs for the Hamilton–Jacobi and Laplace–Beltrami equations on 3-dimensional hyperbolic and de Sitter spaces”, J. Math. Phys., 60 (2019), 033501, 30 pp., arXiv: 1811.04536 | DOI | MR | Zbl