@article{SIGMA_2022_18_a17,
author = {Ilaria Flandoli and Simon D. Lentner},
title = {Algebras of {Non-Local} {Screenings} and {Diagonal} {Nichols} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a17/}
}
Ilaria Flandoli; Simon D. Lentner. Algebras of Non-Local Screenings and Diagonal Nichols Algebras. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a17/
[1] Adamović D., Milas A., “On the triplet vertex algebra $\mathcal W(p)$”, Adv. Math., 217 (2008), 2664–2699, arXiv: 0707.1857 | DOI | MR | Zbl
[2] Adamović D., Milas A., “$C_2$-cofinite $\mathcal W$-algebras and their logarithmic representations”, Conformal Field Theories and Tensor Categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, 249–270, arXiv: 1212.6771 | DOI | MR | Zbl
[3] Andruskiewitsch N., Angiono I., “On finite dimensional Nichols algebras of diagonal type”, Bull. Math. Sci., 7 (2017), 353–573, arXiv: 1707.08387 | DOI | MR | Zbl
[4] Andruskiewitsch N., Angiono I., Bagio D., “Examples of pointed color Hopf algebras”, J. Algebra Appl., 13 (2014), 1350098, 28 pp., arXiv: 1212.0514 | DOI | MR | Zbl
[5] Andruskiewitsch N., Angiono I., Rossi Bertone F., Lie algebras arising from Nichols algebras of diagonal type, arXiv: 1911.06586
[6] Andruskiewitsch N., Angiono I., Yamane H., “On pointed Hopf superalgebras”, New Developments in Lie Theory and Its Applications, Contemp. Math., 544, Amer. Math. Soc., Providence, RI, 2011, 123–140, arXiv: 1009.5148 | DOI | MR | Zbl
[7] Andruskiewitsch N., Heckenberger I., Schneider H.-J., “The Nichols algebra of a semisimple Yetter–Drinfeld module”, Amer. J. Math., 132 (2010), 1493–1547, arXiv: 0803.2430 | MR | Zbl
[8] Andruskiewitsch N., Schneider H.-J., “On the classification of finite-dimensional pointed Hopf algebras”, Ann. of Math., 171 (2010), 375–417, arXiv: math.QA/0502157 | DOI | MR | Zbl
[9] Angiono I., “On Nichols algebras of diagonal type”, J. Reine Angew. Math., 683 (2013), 189–251, arXiv: 1104.0268 | DOI | MR | Zbl
[10] Angiono I., “Distinguished pre-Nichols algebras”, Transform. Groups, 21 (2016), 1–33, arXiv: 1405.6681 | DOI | MR | Zbl
[11] Arakawa T., “Representation theory of $\mathcal W$-algebras”, Invent. Math., 169 (2007), 219–320, arXiv: math.QA/0506056 | DOI | MR | Zbl
[12] Auger J., Creutzig T., Kanade S., Rupert M., Characterizing braided tensor categories associated to logarithmic vertex operator algebras, arXiv: 2104.13262 | MR
[13] Barvels A., Lentner S., Schweigert C., “Partially dualized Hopf algebras have equivalent Yetter–Drinfel'd modules”, J. Algebra, 430 (2015), 303–342, arXiv: 1402.2214 | DOI | MR | Zbl
[14] Creutzig T., Gainutdinov A. M., Runkel I., “A quasi-Hopf algebra for the triplet vertex operator algebra”, Commun. Contemp. Math., 22 (2020), 1950024, 71 pp., arXiv: 1712.07260 | DOI | MR | Zbl
[15] Cuntz M., “Crystallographic arrangements: Weyl groupoids and simplicial arrangements”, Bull. Lond. Math. Soc., 43 (2011), 734–744, arXiv: 1006.1997 | DOI | MR | Zbl
[16] Cuntz M., Heckenberger I., “Finite Weyl groupoids of rank three”, Trans. Amer. Math. Soc., 364 (2012), 1369–1393, arXiv: 0912.0212 | DOI | MR | Zbl
[17] Cuntz M., Heckenberger I., “Finite Weyl groupoids”, J. Reine Angew. Math., 702 (2015), 77–108, arXiv: 1008.5291 | DOI | MR | Zbl
[18] Dong C., Lepowsky J., Generalized vertex algebras and relative vertex operators, Progress in Mathematics, 112, Birkhäuser Boston Inc., Boston, MA, 1993 | DOI | MR | Zbl
[19] Dotsenko V. S., Fateev V. A., “Conformal algebra and multipoint correlation functions in $2$D statistical models”, Nuclear Phys. B, 240 (1984), 312–348 | DOI | MR
[20] Feigin B. L., Fuchs D. B., “Verma modules over the Virasoro algebra”, Topology (Leningrad, 1982), Lecture Notes in Math., 1060, Springer, Berlin, 1984, 230–245 | DOI | MR
[21] Feigin B. L., Tipunin I.Yu., Logarithmic CFTs connected with simple Lie algebras, arXiv: 1002.5047
[22] Felder G., “BRST approach to minimal models”, Nuclear Phys. B, 317 (1989), 215–236 | DOI | MR
[23] Flandoli I., Lentner S., “Logarithmic conformal field theories of type $B_n$, $\ell=4$ and symplectic fermions”, J. Math. Phys., 59 (2018), 071701, 35 pp., arXiv: 1706.07994 | DOI | MR | Zbl
[24] Frappat L., Sciarrino A., Sorba P., Dictionary on Lie superalgebras, arXiv: hep-th/9607161 | MR
[25] Frenkel E., Ben-Zvi D., Vertex algebras and algebraic curves, Mathematical Surveys and Monographs, 88, 2nd ed., Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[26] Gaberdiel M. R., Runkel I., Wood S., “Fusion rules and boundary conditions in the $c=0$ triplet model”, J. Phys. A: Math. Theor., 42 (2009), 325403, 43 pp., arXiv: 0905.0916 | DOI | MR | Zbl
[27] Gainutdinov A. M., Lentner S., Ohrmann T., Modularization of small quantum groups, arXiv: 1809.02116
[28] Gainutdinov A. M., Semikhatov A. M., Tipunin I.Yu., Feigin B. L., “Kazhdan–Lusztig correspondence for the representation category of the triplet $W$-algebra in logarithmic CFT”, Theoret. and Math. Phys., 148 (2006), 1210–1235, arXiv: math.QA/0512621 | DOI | MR | Zbl
[29] Gaitsgory D., “A conjectural extension of the Kazhdan–Lusztig equivalence”, Publ. Res. Inst. Math. Sci., 57 (2021), 1227–1376, arXiv: 1810.09054 | DOI | MR | Zbl
[30] Gannon T., Negron C., Quantum ${\rm SL}(2)$ and logarithmic vertex operator algebras at $(p,1)$-central charge, arXiv: 2104.12821
[31] Garcia G. A., Gavarini F., Multiparameter quantum groups at roots of unity, arXiv: 1708.05760
[32] Heckenberger I., “Weyl equivalence for rank 2 Nichols algebras of diagonal type”, Ann. Univ. Ferrara, 51 (2005), 281–289, arXiv: math.QA/0411621 | DOI | MR | Zbl
[33] Heckenberger I., “Classification of arithmetic root systems of rank 3”, Proceedings of the XVIth Latin American Algebra Colloquium (Spanish), Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2007, 227–252, arXiv: math.QA/0509145 | MR | Zbl
[34] Heckenberger I., “Classification of arithmetic root systems”, Adv. Math., 220 (2009), 59–124, arXiv: math.QA/0605795 | DOI | MR | Zbl
[35] Heckenberger I., “Lusztig isomorphisms for Drinfel'd doubles of bosonizations of Nichols algebras of diagonal type”, J. Algebra, 323 (2010), 2130–2182, arXiv: 0710.4521 | DOI | MR | Zbl
[36] Heckenberger I., Schneider H.-J., “Root systems and Weyl groupoids for Nichols algebras”, Proc. Lond. Math. Soc., 101 (2010), 623–654, arXiv: 0807.0691 | DOI | MR | Zbl
[37] Heckenberger I., Schneider H.-J., “Yetter–Drinfeld modules over bosonizations of dually paired Hopf algebras”, Adv. Math., 244 (2013), 354–394, arXiv: 1111.4673 | DOI | MR | Zbl
[38] Heckenberger I., Schneider H.-J., Hopf algebras and root systems, Mathematical Surveys and Monographs, 247, Amer. Math. Soc., Providence, RI, 2020 | MR | Zbl
[39] Heckenberger I., Yamane H., “A generalization of Coxeter groups, root systems, and Matsumoto's theorem”, Math. Z., 259 (2008), 255–276, arXiv: math.QA/0610823 | DOI | MR | Zbl
[40] Helbig M., “On the lifting of Nichols algebras”, Comm. Algebra, 40 (2012), 3317–3351, arXiv: 1003.5882 | DOI | MR | Zbl
[41] Huang Y.-Z., Lepowsky J., Zhang L., “A logarithmic generalization of tensor product theory for modules for a vertex operator algebra”, Internat. J. Math., 17 (2006), 975–1012, arXiv: math.QA/0311235 | DOI | MR | Zbl
[42] Huang Y.-Z., Lepowsky J., Zhang L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, arXiv: 1012.4193 | MR
[43] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl
[44] Kac V. G., Vertex algebras for beginners, University Lecture Series, 10, 2nd ed., Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl
[45] Kadell K. W.J., “The Selberg–Jack symmetric functions”, Adv. Math., 130 (1997), 33–102 | DOI | MR | Zbl
[46] Khoroshkin S. M., Tolstoy V. N., “Universal $R$-matrix for quantized (super)algebras”, Comm. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl
[47] Lentner S., “New large-rank Nichols algebras over nonabelian groups with commutator subgroup $\mathbb{Z}_2$”, J. Algebra, 419 (2014), 1–33, arXiv: 1306.5684 | DOI | MR | Zbl
[48] Lentner S., “The unrolled quantum group inside Lusztig's quantum group of divided powers”, Lett. Math. Phys., 109 (2019), 1665–1682, arXiv: 1702.05164 | DOI | MR | Zbl
[49] Lentner S., “Quantum groups and Nichols algebras acting on conformal field theories”, Adv. Math., 378 (2021), 107517, 71 pp., arXiv: 1702.06431 | DOI | MR | Zbl
[50] Lusztig G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993 | MR | Zbl
[51] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[52] Mukhin E., Varchenko A., “Remarks on critical points of phase functions and norms of Bethe vectors”, Arrangements – Tokyo 1998, Adv. Stud. Pure Math., 27, Kinokuniya, Tokyo, 2000, 239–246, arXiv: math.RT/9810087 | DOI | MR | Zbl
[53] Nagatomo K., Tsuchiya A., “The triplet vertex operator algebra $W(p)$ and the restricted quantum group $\overline U_q(\mathfrak{sl}_2)$ at $q={\rm e}^{\frac{\pi {\rm i}}{p}}$”, Exploring new structures and natural constructions in mathematical physics, Adv. Stud. Pure Math., 61, Math. Soc. Japan, Tokyo, 2011, 1–49, arXiv: 0902.4607 | DOI | MR | Zbl
[54] Negron C., “Log-modular quantum groups at even roots of unity and the quantum Frobenius I”, Comm. Math. Phys., 382 (2021), 773–814, arXiv: 1812.02277 | DOI | MR | Zbl
[55] Rosso M., “Quantum groups and quantum shuffles”, Invent. Math., 133 (1998), 399–416 | DOI | MR | Zbl
[56] Selberg A., “Remarks on a multiple integral”, Norsk Mat. Tidsskr., 26 (1944), 71–78 | MR
[57] Semikhatov A. M., “Virasoro central charges for Nichols algebras”, Conformal field theories and tensor categories, Math. Lect. Peking Univ., Springer, Heidelberg, 2014, 67–92, arXiv: 1109.1767 | DOI | MR | Zbl
[58] Semikhatov A. M., Tipunin I.Yu., “Logarithmic $\widehat{\mathfrak{sl}}(2)$ CFT models from Nichols algebras: I”, J. Phys. A: Math. Theor., 46 (2013), 494011, 53 pp., arXiv: 1301.2235 | DOI | MR | Zbl
[59] Serganova V., “On generalizations of root systems”, Comm. Algebra, 24 (1996), 4281–4299 | DOI | MR | Zbl
[60] Tarasov V., Varchenko A., “Selberg-type integrals associated with $\mathfrak{sl}_3$”, Lett. Math. Phys., 65 (2003), 173–185, arXiv: math.QA/0302148 | DOI | MR | Zbl
[61] Tsuchiya A., Wood S., “The tensor structure on the representation category of the $\mathcal W_p$ triplet algebra”, J. Phys. A: Math. Theor., 46 (2013), 445203, 40 pp., arXiv: 1201.0419 | DOI | MR | Zbl
[62] Warnaar S. O., “A Selberg integral for the Lie algebra $A_n$”, Acta Math., 203 (2009), 269–304, arXiv: 0708.1193 | DOI | MR | Zbl
[63] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl
[64] Yamane H., “Representations of a $\mathbb Z/3\mathbb Z$-quantum group”, Publ. Res. Inst. Math. Sci., 43 (2007), 75–93 | DOI | MR | Zbl