@article{SIGMA_2022_18_a16,
author = {Ghaliah Alhamzi and Edwin Beggs},
title = {The {Exponential} {Map} for {Hopf} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a16/}
}
Ghaliah Alhamzi; Edwin Beggs. The Exponential Map for Hopf Algebras. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a16/
[1] Beggs E. J., “Differential and holomorphic differential operators on noncommutative algebras”, Russ. J. Math. Phys., 22 (2015), 279–300, arXiv: 1209.3900 | DOI | MR | Zbl
[2] Beggs E. J., “Noncommutative geodesics and the KSGNS construction”, J. Geom. Phys., 158 (2020), 103851, 14 pp., arXiv: 1811.07601 | DOI | MR | Zbl
[3] Beggs E. J., Majid S., “Bar categories and star operations”, Algebr. Represent. Theory, 12 (2009), 103–152, arXiv: math.QA/0701008 | DOI | MR | Zbl
[4] Beggs E. J., Majid S., Quantum geodesics in quantum mechanics, arXiv: 1912.13376
[5] Beggs E. J., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, 355, Springer, Cham, 2020 | DOI | MR | Zbl
[6] Bresser K., Müller-Hoissen F., Dimakis A., Sitarz A., “Non-commutative geometry of finite groups”, J. Phys. A: Math. Gen., 29 (1996), 2705–2735 | DOI | MR | Zbl
[7] Chung F. R.K., Spectral graph theory, CBMS Regional Conference Series in Mathematics, 92, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[8] Dubois-Violette M., Masson T., “On the first-order operators in bimodules”, Lett. Math. Phys., 37 (1996), 467–474, arXiv: q-alg/9507028 | DOI | MR | Zbl
[9] Dubois-Violette M., Michor P. W., “Connections on central bimodules in noncommutative differential geometry”, J. Geom. Phys., 20 (1996), 218–232, arXiv: q-alg/9503020 | DOI | MR | Zbl
[10] Fiore G., Madore J., “Leibniz rules and reality conditions”, Eur. Phys. J. C Part. Fields, 17 (2000), 359–366, arXiv: math.QA/9806071 | DOI | MR | Zbl
[11] Franz U., “Lévy processes on quantum groups”, Probability on Algebraic Structures (Gainesville, FL, 1999), Contemp. Math., 261, Amer. Math. Soc., Providence, RI, 2000, 161–179 | DOI | MR | Zbl
[12] Gomez X., Majid S., “Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras”, J. Algebra, 261 (2003), 334–388, arXiv: math.QA/0112299 | DOI | MR | Zbl
[13] Hausner M., Schwartz J. T., Lie groups, Lie algebras, Gordon and Breach Science Publishers, New York – London – Paris, 1968 | MR | Zbl
[14] Kulish P. P., Reshetikhin N.Yu., “Quantum linear problem for the sine-Gordon equation and higher representations”, J. Sov. Math., 23 (1983), 2435–2441 | DOI | MR
[15] Lance E. C., Hilbert $C^*$-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[16] Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, 257, 2nd ed., Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[17] Majid S., “Quantum and braided-Lie algebras”, J. Geom. Phys., 13 (1994), 307–356, arXiv: hep-th/9303148 | DOI | MR | Zbl
[18] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[19] Mourad J., “Linear connections in non-commutative geometry”, Classical Quantum Gravity, 12 (1995), 965–974 | DOI | MR | Zbl
[20] Sklyanin E. K., “Some algebraic structures connected with the Yang–Baxter equation”, Funct. Anal. Appl., 16 (1982), 263–270 | DOI | MR
[21] Taft E. J., “The order of the antipode of finite-dimensional Hopf algebra”, Proc. Nat. Acad. Sci. USA, 68 (1971), 2631–2633 | DOI | MR | Zbl
[22] Weisstein E. W., Generalized hypergeometric function, From MathWorld – A Wolfram Web Resource https://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html
[23] Woronowicz S. L., “Twisted ${\rm SU}(2)$ group. An example of a noncommutative differential calculus”, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181 | DOI | MR | Zbl
[24] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl