The Exponential Map for Hopf Algebras
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give an analogue of the classical exponential map on Lie groups for Hopf $*$-algebras with differential calculus. The major difference with the classical case is the interpretation of the value of the exponential map, classically an element of the Lie group. We give interpretations as states on the Hopf algebra, elements of a Hilbert $C^{*} $-bimodule of $\frac{1}{2}$ densities and elements of the dual Hopf algebra. We give examples for complex valued functions on the groups $S_{3}$ and $\mathbb{Z}$, Woronowicz's matrix quantum group $\mathbb{C}_{q}[SU_2] $ and the Sweedler–Taft algebra.
Keywords: Hopf algebra, differential calculus, Lie algebra, exponential map.
@article{SIGMA_2022_18_a16,
     author = {Ghaliah Alhamzi and Edwin Beggs},
     title = {The {Exponential} {Map} for {Hopf} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a16/}
}
TY  - JOUR
AU  - Ghaliah Alhamzi
AU  - Edwin Beggs
TI  - The Exponential Map for Hopf Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a16/
LA  - en
ID  - SIGMA_2022_18_a16
ER  - 
%0 Journal Article
%A Ghaliah Alhamzi
%A Edwin Beggs
%T The Exponential Map for Hopf Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a16/
%G en
%F SIGMA_2022_18_a16
Ghaliah Alhamzi; Edwin Beggs. The Exponential Map for Hopf Algebras. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a16/

[1] Beggs E. J., “Differential and holomorphic differential operators on noncommutative algebras”, Russ. J. Math. Phys., 22 (2015), 279–300, arXiv: 1209.3900 | DOI | MR | Zbl

[2] Beggs E. J., “Noncommutative geodesics and the KSGNS construction”, J. Geom. Phys., 158 (2020), 103851, 14 pp., arXiv: 1811.07601 | DOI | MR | Zbl

[3] Beggs E. J., Majid S., “Bar categories and star operations”, Algebr. Represent. Theory, 12 (2009), 103–152, arXiv: math.QA/0701008 | DOI | MR | Zbl

[4] Beggs E. J., Majid S., Quantum geodesics in quantum mechanics, arXiv: 1912.13376

[5] Beggs E. J., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, 355, Springer, Cham, 2020 | DOI | MR | Zbl

[6] Bresser K., Müller-Hoissen F., Dimakis A., Sitarz A., “Non-commutative geometry of finite groups”, J. Phys. A: Math. Gen., 29 (1996), 2705–2735 | DOI | MR | Zbl

[7] Chung F. R.K., Spectral graph theory, CBMS Regional Conference Series in Mathematics, 92, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[8] Dubois-Violette M., Masson T., “On the first-order operators in bimodules”, Lett. Math. Phys., 37 (1996), 467–474, arXiv: q-alg/9507028 | DOI | MR | Zbl

[9] Dubois-Violette M., Michor P. W., “Connections on central bimodules in noncommutative differential geometry”, J. Geom. Phys., 20 (1996), 218–232, arXiv: q-alg/9503020 | DOI | MR | Zbl

[10] Fiore G., Madore J., “Leibniz rules and reality conditions”, Eur. Phys. J. C Part. Fields, 17 (2000), 359–366, arXiv: math.QA/9806071 | DOI | MR | Zbl

[11] Franz U., “Lévy processes on quantum groups”, Probability on Algebraic Structures (Gainesville, FL, 1999), Contemp. Math., 261, Amer. Math. Soc., Providence, RI, 2000, 161–179 | DOI | MR | Zbl

[12] Gomez X., Majid S., “Braided Lie algebras and bicovariant differential calculi over co-quasitriangular Hopf algebras”, J. Algebra, 261 (2003), 334–388, arXiv: math.QA/0112299 | DOI | MR | Zbl

[13] Hausner M., Schwartz J. T., Lie groups, Lie algebras, Gordon and Breach Science Publishers, New York – London – Paris, 1968 | MR | Zbl

[14] Kulish P. P., Reshetikhin N.Yu., “Quantum linear problem for the sine-Gordon equation and higher representations”, J. Sov. Math., 23 (1983), 2435–2441 | DOI | MR

[15] Lance E. C., Hilbert $C^*$-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[16] Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, 257, 2nd ed., Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[17] Majid S., “Quantum and braided-Lie algebras”, J. Geom. Phys., 13 (1994), 307–356, arXiv: hep-th/9303148 | DOI | MR | Zbl

[18] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[19] Mourad J., “Linear connections in non-commutative geometry”, Classical Quantum Gravity, 12 (1995), 965–974 | DOI | MR | Zbl

[20] Sklyanin E. K., “Some algebraic structures connected with the Yang–Baxter equation”, Funct. Anal. Appl., 16 (1982), 263–270 | DOI | MR

[21] Taft E. J., “The order of the antipode of finite-dimensional Hopf algebra”, Proc. Nat. Acad. Sci. USA, 68 (1971), 2631–2633 | DOI | MR | Zbl

[22] Weisstein E. W., Generalized hypergeometric function, From MathWorld – A Wolfram Web Resource https://mathworld.wolfram.com/GeneralizedHypergeometricFunction.html

[23] Woronowicz S. L., “Twisted ${\rm SU}(2)$ group. An example of a noncommutative differential calculus”, Publ. Res. Inst. Math. Sci., 23 (1987), 117–181 | DOI | MR | Zbl

[24] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl