Celestial $w_{1+\infty}$ Symmetries from Twistor Space
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We explain how twistor theory represents the self-dual sector of four dimensional gravity in terms of the loop group of Poisson diffeomorphisms of the plane via Penrose's non-linear graviton construction. The symmetries of the self-dual sector are generated by the corresponding loop algebra $Lw_{1+\infty}$ of the algebra $w_{1+\infty}$ of these Poisson diffeomorphisms. We show that these coincide with the infinite tower of soft graviton symmetries in tree-level perturbative gravity recently discovered in the context of celestial amplitudes. We use a twistor sigma model for the self-dual sector which describes maps from the Riemann sphere to the asymptotic twistor space defined from characteristic data at null infinity $\mathscr{I}$. We show that the OPE of the sigma model naturally encodes the Poisson structure on twistor space and gives rise to the celestial realization of $Lw_{1+\infty}$. The vertex operators representing soft gravitons in our model act as currents generating the wedge algebra of $w_{1+\infty}$ and produce the expected celestial OPE with hard gravitons of both helicities. We also discuss how the two copies of $Lw_{1+\infty}$, one for each of the self-dual and anti-self-dual sectors, are represented in the OPEs of vertex operators of the 4d ambitwistor string.
Keywords: twistor theory, scattering amplitudes, self-duality.
@article{SIGMA_2022_18_a15,
     author = {Tim Adamo and Lionel Mason and Atul Sharma},
     title = {Celestial $w_{1+\infty}$ {Symmetries} from {Twistor} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a15/}
}
TY  - JOUR
AU  - Tim Adamo
AU  - Lionel Mason
AU  - Atul Sharma
TI  - Celestial $w_{1+\infty}$ Symmetries from Twistor Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a15/
LA  - en
ID  - SIGMA_2022_18_a15
ER  - 
%0 Journal Article
%A Tim Adamo
%A Lionel Mason
%A Atul Sharma
%T Celestial $w_{1+\infty}$ Symmetries from Twistor Space
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a15/
%G en
%F SIGMA_2022_18_a15
Tim Adamo; Lionel Mason; Atul Sharma. Celestial $w_{1+\infty}$ Symmetries from Twistor Space. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a15/

[1] Adamo T., Bu W., Casali E., Sharma A., Celestial operator products from the worldsheet, arXiv: 2111.02279

[2] Adamo T., Casali E., “Perturbative gauge theory at null infinity”, Phys. Rev. D, 91 (2015), 125022, 10 pp., arXiv: 1504.02304 | DOI | MR

[3] Adamo T., Casali E., Skinner D., “Perturbative gravity at null infinity”, Classical Quantum Gravity, 31 (2014), 225008, 12 pp., arXiv: 1405.5122 | DOI | MR | Zbl

[4] Adamo T., Mason L., “Twistor-strings and gravity tree amplitudes”, Classical Quantum Gravity, 30 (2013), 075020, 27 pp., arXiv: 1207.3602 | DOI | MR | Zbl

[5] Adamo T., Mason L., Sharma A., Twistor sigma models for quaternionic geometry and graviton scattering, arXiv: 2103.16984

[6] Adamo T., Mason L., Sharma A., “Celestial amplitudes and conformal soft theorems”, Classical Quantum Gravity, 36 (2019), 205018, 22 pp., arXiv: 1905.09224 | DOI | MR | Zbl

[7] Aneesh P. B., Compère G., de Gioia L. P., Mol I., Swidler B., Celestial holography: lectures on asymptotic symmetries, arXiv: 2109.00997

[8] Atanasov A., Ball A., Melton W., Raclariu A. M., Strominger A., “$(2,2)$ Scattering and the celestial torus”, J. High Energy Phys., 2021:7 (2021), 083, 15 pp., arXiv: 2101.09591 | DOI | MR

[9] Atanasov A., Melton W., Raclariu A. M., Strominger A., “Conformal block expansion in celestial CFT”, Phys. Rev. D, 104 (2021), 126033, 17 pp., arXiv: 2104.13432 | DOI | MR

[10] Bakas I., “The large-$N$ limit of extended conformal symmetries”, Phys. Lett. B, 228 (1989), 57–63 | DOI | MR

[11] Bakas I., “The structure of the $W_\infty$ algebra”, Comm. Math. Phys., 134 (1990), 487–508 | DOI | MR | Zbl

[12] Barnich G., Troessaert C., “Symmetries of asymptotically flat four-dimensional spacetimes at null infinity revisited”, Phys. Rev. Lett., 105 (2010), 111103, 3 pp., arXiv: 0909.2617 | DOI | MR

[13] Baston R. J., Mason L. J., “Conformal gravity, the Einstein equations and spaces of complex null geodesics”, Classical Quantum Gravity, 4 (1987), 815–826 | DOI | MR | Zbl

[14] Bern Z., Dixon L., Perelstein M., Rozowsky J. S., “Multi-leg one-loop gravity amplitudes from gauge theory”, Nuclear Phys. B, 546 (1999), 423–479, arXiv: hep-th/9811140 | DOI | MR | Zbl

[15] Bondi H., van der Burg M. G.J., Metzner A. W.K., “Gravitational waves in general relativity. VII Waves from axi-symmetric isolated systems”, Proc. Roy. Soc. London Ser. A, 269 (1962), 21–52 | DOI | MR | Zbl

[16] Boyer C. P., Plebański J. F., “An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces”, J. Math. Phys., 26 (1985), 229–234 | DOI | MR | Zbl

[17] Donnay L., Puhm A., Strominger A., “Conformally soft photons and gravitons”, J. High Energy Phys., 2019:1 (2019), 184, 22 pp., arXiv: 1810.05219 | DOI | MR | Zbl

[18] Dunajski M., Mason L. J., “Hyper-Kähler hierarchies and their twistor theory”, Comm. Math. Phys., 213 (2000), 641–672, arXiv: math.DG/0001008 | DOI | MR | Zbl

[19] Eastwood M., Tod P., “Edth – a differential operator on the sphere”, Math. Proc. Cambridge Philos. Soc., 92 (1982), 317–330 | DOI | MR | Zbl

[20] Fateev V. A., Lykyanov S. L., “The models of two-dimensional conformal quantum field theory with $Z_n$ symmetry”, Internat. J. Modern Phys. A, 3 (1988), 507–520 | DOI | MR

[21] Fateev V. A., Zamolodchikov A. B., “Conformal quantum field theory models in two dimensions having $Z_3$ symmetry”, Nuclear Phys. B, 280 (1987), 644–660 | DOI | MR

[22] Feng B., He S., “Graphs, determinants and gravity amplitudes”, J. High Energy Phys., 2012:10 (2012), 121, 20 pp., arXiv: 1207.3220 | DOI | MR

[23] Geyer Y., Ambitwistor strings: worldsheet approaches to perturbative quantum field theories, Oxford University, 2016, arXiv: 1610.04525

[24] Geyer Y., Lipstein A. E., Mason L., “Ambitwistor strings in four dimensions”, Phys. Rev. Lett., 113 (2014), 081602, 5 pp., arXiv: 1404.6219 | DOI

[25] Geyer Y., Lipstein A. E., Mason L., “Ambitwistor strings at null infinity and (subleading) soft limits”, Classical Quantum Gravity, 32 (2015), 055003, 28 pp., arXiv: 1406.1462 | DOI | MR | Zbl

[26] Guevara A., Notes on conformal soft theorems and recursion relations in gravity, arXiv: 1906.07810

[27] Guevara A., Celestial OPE blocks, arXiv: 2108.12706

[28] Guevara A., Himwich E., Pate M., Strominger A., “Holographic symmetry algebras for gauge theory and gravity”, J. High Energy Phys., 2021:11 (2021), 152, 17 pp., arXiv: 2103.03961 | MR

[29] He T., Lysov V., Mitra P., Strominger A., “BMS supertranslations and Weinberg's soft graviton theorem”, J. High Energy Phys., 2015:5 (2015), 151, 17 pp., arXiv: 1401.7026 | DOI | MR | Zbl

[30] Himwich E., Pate M., Singh K., “Celestial operator product expansions and ${\rm w}_{1+\infty}$ symmetry for all spins”, J. High Energy Phys., 2022:1 (2022), 080, 29 pp., arXiv: 2108.07763 | DOI

[31] Hodges A., A simple formula for gravitational MHV amplitudes, arXiv: 1204.1930 | MR

[32] Hoppe J., “Diffeomorphism groups, quantization, and ${\rm SU}(\infty)$”, Internat. J. Modern Phys. A, 4 (1989), 5235–5248 | DOI | MR | Zbl

[33] Isenberg J., Yasskin P. B., Green P. S., “Nonselfdual gauge fields”, Phys. Lett. B, 78 (1978), 462–464 | DOI

[34] Jiang H., Holographic chiral algebra: supersymmetry, infinite ward identities, and EFTs, arXiv: 2108.08799

[35] Ko M., Ludvigsen M., Newman E. T., Tod K. P., “The theory of ${\mathcal H}$-space”, Phys. Rep., 71 (1981), 51–139 | DOI | MR

[36] LeBrun C., “Thickenings and conformal gravity”, Comm. Math. Phys., 139 (1991), 1–43 | DOI | MR | Zbl

[37] LeBrun C., Mason L. J., “Nonlinear gravitons, null geodesics, and holomorphic disks”, Duke Math. J., 136 (2007), 205–273, arXiv: math.DG/0504582 | DOI | MR | Zbl

[38] Mason L. J., Twistors in curved space time, Ph.D. Thesis, University of Oxford, 1985

[39] Mason L. J., H-space: a universal integrable system?, Twistor Newsletter, 30 (1990), 14–17 http://people.maths.ox.ac.uk/lmason/Tn/30/TN30-05.pdf

[40] Mason L. J., “Global anti-self-dual Yang–Mills fields in split signature and their scattering”, J. Reine Angew. Math., 597 (2006), 105–133, arXiv: math-ph/0505039 | DOI | MR | Zbl

[41] Mason L. J., Chakravarty S., Newman E. T., “Bäcklund transformations for the anti-self-dual Yang–Mills equations”, J. Math. Phys., 29 (1988), 1005–1013 | DOI | MR | Zbl

[42] Mason L. J., Chakravarty S., Newman E. T., “A simple solution generation method for anti-self-dual Yang–Mills equations”, Phys. Lett. A, 130 (1988), 65–68 | DOI | MR

[43] Mason L. J., Skinner D., “Gravity, twistors and the MHV formalism”, Comm. Math. Phys., 294 (2010), 827–862, arXiv: 0808.3907 | DOI | MR | Zbl

[44] Mason L. J., Wolf M., “Twistor actions for self-dual supergravities”, Comm. Math. Phys., 288 (2009), 97–123, arXiv: 0706.1941 | DOI | MR | Zbl

[45] Mason L. J., Woodhouse N. M.J., Integrability, self-duality, and twistor theory, London Mathematical Society Monographs, New Series, 15, The Clarendon Press, Oxford University Press, New York, 1996 | MR

[46] Newman E. T., “Heaven and its properties”, Gen. Relativity Gravitation, 7 (1976), 107–111 | DOI | MR

[47] Newman E. T., Penrose R., “An approach to gravitational radiation by a method of spin coefficients”, J. Math. Phys., 3 (1962), 566–578 | DOI | MR

[48] Nguyen D., Spradlin M., Volovich A., Wen C., “The tree formula for MHV graviton amplitudes”, J. High Energy Phys., 2010:7 (2010), 045, 17 pp., arXiv: 0907.2276 | DOI | MR | Zbl

[49] Ooguri H., Vafa C., “Self-duality and $N=2$ string magic”, Modern Phys. Lett. A, 5 (1990), 1389–1398 | DOI | MR | Zbl

[50] Ooguri H., Vafa C., “Geometry of $N=2$ strings”, Nuclear Phys. B, 361 (1991), 469–518 | DOI | MR

[51] Park Q.-H., “Extended conformal symmetries in real heavens”, Phys. Lett. B, 236 (1990), 429–432 | DOI | MR

[52] Park Q.-H., “Self-dual gravity as a large-$N$ limit of the $2$D nonlinear sigma model”, Phys. Lett. B, 238 (1990), 287–290 | DOI | MR | Zbl

[53] Pasterski S., Lectures on celestial amplitudes, arXiv: 2108.04801

[54] Pasterski S., Shao S.-H., “Conformal basis for flat space amplitudes”, Phys. Rev. D, 96 (2017), 065022, 17 pp., arXiv: 1705.01027 | DOI | MR

[55] Pasterski S., Shao S.-H., Strominger A., “Flat space amplitudes and conformal symmetry of the celestial sphere”, Phys. Rev. D, 96 (2017), 065026, 7 pp., arXiv: 1701.00049 | DOI | MR

[56] Penrose R., “Asymptotic properties of fields and space-times”, Phys. Rev. Lett., 10 (1963), 66–68 | DOI | MR

[57] Penrose R., “Zero rest-mass fields including gravitation: Asymptotic behaviour”, Proc. Roy. Soc. London Ser. A, 284 (1965), 159–203 | DOI | MR | Zbl

[58] Penrose R., “Solutions of the zero-rest-mass equations”, J. Math. Phys., 10 (1969), 38–39 | DOI

[59] Penrose R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativity Gravitation, 7 (1976), 31–52 | DOI | MR | Zbl

[60] Penrose R., “The nonlinear graviton”, Gen. Relativity Gravitation, 7 (1976), 171–176 | DOI | MR

[61] Penrose R., “Palatial twistor theory and the twistor googly problem”, Philos. Trans. Roy. Soc. A, 373 (2015), 20140237, 14 pp. | DOI | MR | Zbl

[62] Penrose R., Rindler W., Spinors and space-time, v. 2, Cambridge Monographs on Mathematical Physics, Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1986 | DOI | MR

[63] Plebański J. F., “Some solutions of complex Einstein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR

[64] Pope C. N., “Lectures on $W$ algebras and $W$ gravity”, Summer School in High-energy Physics and Cosmology, World Scientific, Singapore, Singapore, 1992, 827–867, arXiv: hep-th/9112076

[65] Puhm A., “Conformally soft theorem in gravity”, J. High Energy Phys., 2020:9 (2020), 130, 14 pp., arXiv: 1905.09799 | DOI | MR

[66] Raclariu A.-M., Lectures on celestial holography, arXiv: 2107.02075

[67] Sachs R. K., “Gravitational waves in general relativity. VI The outgoing radiation condition”, Proc. Roy. Soc. London Ser. A, 264 (1961), 309–338 | DOI | MR | Zbl

[68] Sachs R. K., “Gravitational waves in general relativity. VIII Waves in asymptotically flat space-time”, Proc. Roy. Soc. London Ser. A, 270 (1962), 103–126 | DOI | MR | Zbl

[69] Sachs R. K., “On the characteristic initial value problem in gravitational theory”, J. Math. Phys., 3 (1962), 908–914 | DOI | MR | Zbl

[70] Sharma A., Ambidextrous light transforms for celestial amplitudes, arXiv: 2107.06250

[71] Skinner D., “Twistor strings for ${\mathcal N}=8$ supergravity”, J. High Energy Phys., 2020:3 (2020), 047, 50 pp., arXiv: 1301.0868 | DOI | MR

[72] Strachan I. A.B., “The Moyal algebra and integrable deformations of the self-dual Einstein equations”, Phys. Lett. B, 283 (1992), 63–66 | DOI | MR

[73] Strominger A., “Asymptotic symmetries of Yang–Mills theory”, J. High Energy Phys., 2014:7 (2014), 151, 18 pp., arXiv: 1308.0589 | DOI | MR | Zbl

[74] Strominger A., “On BMS invariance of gravitational scattering”, J. High Energy Phys., 2014:7 (2014), 152, 20 pp., arXiv: 1312.2229 | DOI | MR | Zbl

[75] Strominger A., Lectures on the infrared structure of gravity and gauge theory, Princeton University Press, Princeton, NJ, 2018, arXiv: 1703.05448 | DOI | MR | Zbl

[76] Strominger A., $w_{1+\infty}$ and the celestial sphere, arXiv: 2105.14346 | MR

[77] Ward R. S., “On self-dual gauge fields”, Phys. Lett. A, 61 (1977), 81–82 | DOI | MR | Zbl

[78] Witten E., “An interpretation of classical Yang–Mills theory”, Phys. Lett. B, 77 (1978), 394–398 | DOI

[79] Witten E., “Parity invariance for strings in twistor space”, Adv. Theor. Math. Phys., 8 (2004), 779–797 ; (2005), arXiv: hep-th/0403199 | DOI | MR

[80] Woodhouse N. M.J., “Twistor description of the symmetries of Einstein's equations for stationary axisymmetric spacetimes”, Classical Quantum Gravity, 4 (1987), 799–814 | DOI | MR | Zbl

[81] Woodhouse N. M.J., Mason L. J., “The Geroch group and non-Hausdorff twistor spaces”, Nonlinearity, 1 (1988), 73–114 | DOI | MR | Zbl

[82] Zamolodchikov A. B., “Infinite additional symmetries in two-dimensional conformal quantum field theory”, Theoret. and Math. Phys., 65 (1985), 1205–1213 | DOI | MR