@article{SIGMA_2022_18_a14,
author = {Kay Schwieger and Stefan Wagner},
title = {An {Atiyah} {Sequence} for {Noncommutative} {Principal} {Bundles}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a14/}
}
Kay Schwieger; Stefan Wagner. An Atiyah Sequence for Noncommutative Principal Bundles. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a14/
[1] Arnlind J., Tiger Norkvist A., “Noncommutative minimal embeddings and morphisms of pseudo-Riemannian calculi”, J. Geom. Phys., 159 (2021), 103898, 17 pp., arXiv: 1906.03885 | DOI | MR | Zbl
[2] Arnlind J., Wilson M., “On the Chern–Gauss–Bonnet theorem for the noncommutative 4-sphere”, J. Geom. Phys., 111 (2017), 126–141, arXiv: 1604.01159 | DOI | MR | Zbl
[3] Arnlind J., Wilson M., “Riemannian curvature of the noncommutative 3-sphere”, J. Noncommut. Geom., 11 (2017), 507–536, arXiv: 1505.07330 | DOI | MR | Zbl
[4] Atiyah M.F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl
[5] Batty C.J.K., Carey A.L., Evans D.E., Robinson D.W., “Extending derivations”, Publ. Res. Inst. Math. Sci., 20 (1984), 119–130 | DOI | MR | Zbl
[6] Baum P.F., De Commer K., Hajac P.M., “Free actions of compact quantum groups on unital $C^*$-algebras”, Doc. Math., 22 (2017), 825–849, arXiv: 1304.2812 | DOI | MR | Zbl
[7] Baum P.F., Hajac P.M., Matthes R., Szymanski W., Noncommutative geometry approach to principal and associated bundles, arXiv: math.DG/0701033
[8] Beggs E.J., Majid S., Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, 355, Springer, Cham, 2020 | DOI | MR | Zbl
[9] Brzeziński T., Hajac P.M., “The Chern–Galois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl
[10] Ćaćić B., Mesland B., “Gauge theory on noncommutative Riemannian principal bundles”, Comm. Math. Phys., 388 (2021), 107–198, arXiv: 1912.04179 | DOI | MR | Zbl
[11] Dalec'kiĭ J.L., Kreĭn M.G., Stability of solutions of differential equations in Banach space, Translations of Mathematical Monographs, 43, Amer. Math. Soc., Providence, R.I., 1974 | MR
[12] Da̧browski L., Grosse H., Hajac P.M., “Strong connections and Chern–Connes pairing in the Hopf–Galois theory”, Comm. Math. Phys., 220 (2001), 301–331, arXiv: math.QA/9912239 | DOI | MR
[13] Da̧browski L., Sitarz A., “Noncommutative circle bundles and new Dirac operators”, Comm. Math. Phys., 318 (2013), 111–130, arXiv: 1012.3055 | DOI | MR
[14] Da̧browski L., Sitarz A., Zucca A., “Dirac operators on noncommutative principal circle bundles”, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450012, 29 pp., arXiv: 1305.6185 | DOI | MR
[15] De Commer K., Yamashita M., “A construction of finite index ${\rm C}^*$-algebra inclusions from free actions of compact quantum groups”, Publ. Res. Inst. Math. Sci., 49 (2013), 709–735, arXiv: 1201.4022 | DOI | MR | Zbl
[16] Dubois-Violette M., “Dérivations et calcul différentiel non commutatif”, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 403–408 | MR | Zbl
[17] Dubois-Violette M., Kriegl A., Maeda Y., Michor P.W., “Smooth $*$-algebras”, Progr. Theoret. Phys. Suppl., 144 (2001), 54–78, arXiv: math.QA/0106150 | DOI | MR | Zbl
[18] Echterhoff S., Nest R., Oyono-Oyono H., “Principal non-commutative torus bundles”, Proc. Lond. Math. Soc., 99 (2009), 1–31, arXiv: 0810.0111 | DOI | MR | Zbl
[19] Ellwood D.A., “A new characterisation of principal actions”, J. Funct. Anal., 173 (2000), 49–60 | DOI | MR | Zbl
[20] Forsyth I., Rennie A., “Factorisation of equivariant spectral triples in unbounded $KK$-theory”, J. Aust. Math. Soc., 107 (2019), 145–180, arXiv: 1505.02863 | DOI | MR | Zbl
[21] Hannabuss K.C., Mathai V., “Noncommutative principal torus bundles via parametrised strict deformation quantization”, Superstrings, Geometry, Topology, and $C^\ast$-Algebras, Proc. Sympos. Pure Math., 81, Amer. Math. Soc., Providence, RI, 2010, 133–147, arXiv: 0911.1886 | DOI | MR | Zbl
[22] Iochum B., Masson T., “Crossed product extensions of spectral triples”, J. Noncommut. Geom., 10 (2016), 65–133, arXiv: 1406.4642 | DOI | MR | Zbl
[23] Ivankov P., Quantization of noncompact coverings, arXiv: 1702.07918
[24] Kobayashi S., Nomizu K., Foundations of differential geometry, v. II, Wiley Classics Library, John Wiley Sons, Inc., New York, 1996 | MR
[25] Landi G., van Suijlekom W., “Principal fibrations from noncommutative spheres”, Comm. Math. Phys., 260 (2005), 203–225, arXiv: math.QA/0410077 | DOI | MR | Zbl
[26] Lecomte P.B.A., “Sur la suite exacte canonique associée à un fibré principal”, Bull. Soc. Math. France, 113 (1985), 259–271 | DOI | MR | Zbl
[27] Mac Lane S., Homology, Classics in Mathematics, Springer-Verlag, Berlin – Heidelberg, 1995 | DOI | MR | Zbl
[28] Meir E., “Hopf cocycle deformations and invariant theory”, Math. Z., 294 (2020), 1355–1395, arXiv: 1804.00289 | DOI | MR | Zbl
[29] Neeb K.-H., “Lie group extensions associated to projective modules of continuous inverse algebras”, Arch. Math. (Brno), 44 (2008), 465–489, arXiv: 0802.2993 | MR | Zbl
[30] Neshveyev S., “Duality theory for nonergodic actions”, Münster J. Math., 7 (2014), 413–437, arXiv: 1303.6207 | DOI | MR | Zbl
[31] Phillips N.C., Equivariant $K$-theory and freeness of group actions on $C^*$-algebras, Lecture Notes in Math., 1274, Springer-Verlag, Berlin, 1987 | DOI | MR | Zbl
[32] Rieffel M.A., “Proper actions of groups on $C^*$-algebras”, Mappings of Operator Algebras (Philadelphia, PA, 1988), Progr. Math., 84, Birkhäuser Boston, Boston, MA, 1990, 141–182 | DOI | MR
[33] Rieffel M.A., “A global view of equivariant vector bundles and Dirac operators on some compact homogeneous spaces”, Group Representations, Ergodic Theory, and Mathematical Physics: a Tribute to George W Mackey, Contemp. Math., 449, Amer. Math. Soc., Providence, RI, 2008, 399–415, arXiv: math.DG/0703496 | DOI | MR | Zbl
[34] Schwieger K., Wagner S., “Part I, Free actions of compact Abelian groups on ${\rm C}^*$-algebras”, Adv. Math., 317 (2017), 224–266, arXiv: 1505.00688 | DOI | MR | Zbl
[35] Schwieger K., Wagner S., “Part II, Free actions of compact groups on $\rm C^*$-algebras”, J. Noncommut. Geom., 11 (2017), 641–668, arXiv: 1508.07904 | DOI | MR | Zbl
[36] Schwieger K., Wagner S., “Part III, Free actions of compact quantum groups on ${\rm C}^*$-algebras”, SIGMA, 13 (2017), 062, 19 pp., arXiv: 1701.05895 | DOI | MR | Zbl
[37] Schwieger K., Wagner S., “Noncommutative coverings of quantum tori”, Math. Scand., 126 (2020), 99–116, arXiv: 1710.09396 | DOI | MR | Zbl
[38] Schwieger K., Wagner S., “Lifting spectral triples to noncommutative principal bundles”, Adv. Math., 396 (2022), 108160, 36 pp., arXiv: 2012.15364 | DOI | MR | Zbl
[39] Wagner S., “Free group actions from the viewpoint of dynamical systems”, Münster J. Math., 5 (2012), 73–97, arXiv: 1111.5562 | MR | Zbl
[40] Wagner S., “Secondary characteristic classes of Lie algebra extensions”, Bull. Soc. Math. France, 147 (2019), 443–453, arXiv: 1707.08412 | DOI | MR | Zbl
[41] Wahl C., “Index theory for actions of compact Lie groups on $C^*$-algebras”, J. Operator Theory, 63 (2010), 217–242, arXiv: 0707.3207 | MR | Zbl