@article{SIGMA_2022_18_a12,
author = {Zhijie Chen and Chang-Shou Lin and Yifan Yang},
title = {Modular {Ordinary} {Differential} {Equations} on $\mathrm{SL}(2,\mathbb{Z})$ of {Third} {Order} and {Applications}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a12/}
}
TY - JOUR
AU - Zhijie Chen
AU - Chang-Shou Lin
AU - Yifan Yang
TI - Modular Ordinary Differential Equations on $\mathrm{SL}(2,\mathbb{Z})$ of Third Order and Applications
JO - Symmetry, integrability and geometry: methods and applications
PY - 2022
VL - 18
UR - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a12/
LA - en
ID - SIGMA_2022_18_a12
ER -
%0 Journal Article
%A Zhijie Chen
%A Chang-Shou Lin
%A Yifan Yang
%T Modular Ordinary Differential Equations on $\mathrm{SL}(2,\mathbb{Z})$ of Third Order and Applications
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a12/
%G en
%F SIGMA_2022_18_a12
Zhijie Chen; Chang-Shou Lin; Yifan Yang. Modular Ordinary Differential Equations on $\mathrm{SL}(2,\mathbb{Z})$ of Third Order and Applications. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a12/
[1] Arike Y., Kaneko M., Nagatomo K., Sakai Y., “Affine vertex operator algebras and modular linear differential equations”, Lett. Math. Phys., 106 (2016), 693–718 | DOI | MR | Zbl
[2] Beukers F., Heckman G., “Monodromy for the hypergeometric function $_nF_{n-1}$”, Invent. Math., 95 (1989), 325–354 | DOI | MR | Zbl
[3] Bol G., “Invarianten linearer differentialgleichungen”, Abh. Math. Sem. Univ. Hamburg, 16 (1949), 1–28 | DOI | MR | Zbl
[4] Chen Z., Kuo T.-J., Lin C.-S., “The geometry of generalized Lamé equation, I”, J. Math. Pures Appl., 127 (2019), 89–120, arXiv: 1708.05306 | DOI | MR | Zbl
[5] Chen Z., Kuo T.-J., Lin C.-S., “The geometry of generalized Lamé equation, II: Existence of pre-modular forms and application”, J. Math. Pures Appl., 132 (2019), 251–272, arXiv: 1807.07745 | DOI | MR | Zbl
[6] Chen Z., Kuo T.-J., Lin C.-S., “The geometry of generalized Lamé equation, III: One to one of the Riemann–Hilbert correspondnece”, Pure Appl. Math. Q., 17 (2021), 1619–1668, arXiv: 2009.00840 | DOI | MR | Zbl
[7] Chen Z., Lin C.-S., “On number and evenness of solutions of the ${\rm SU}(3)$ Toda system on flat tori with non-critical parameters”, J. Differ. Geom. (to appear) , arXiv: 2109.11721
[8] Choie Y., Lee M. H., Jacobi-like forms, pseudodifferential operators, and quasimodular forms, Springer Monographs in Mathematics, Springer, Cham, 2019 | DOI | MR | Zbl
[9] Franc C., Mason G., “Hypergeometric series, modular linear differential equations and vector-valued modular forms”, Ramanujan J., 41 (2016), 233–267, arXiv: 1503.05519 | DOI | MR | Zbl
[10] Franc C., Mason G., “Classification of some vertex operator algebras of rank 3”, Algebra Number Theory, 14 (2020), 1613–1668, arXiv: 1905.07500 | DOI | MR
[11] Franc C., Mason G., “Constructions of vector-valued modular forms of rank four and level one”, Int. J. Number Theory, 16 (2020), 1111–1152, arXiv: 1810.09408 | DOI | MR | Zbl
[12] Gaberdiel M. R., Keller C. A., “Modular differential equations and null vectors”, J. High Energy Phys., 2008:9 (2008), 079, 29 pp., arXiv: 0804.0489 | DOI | MR | Zbl
[13] Grabner P. J., “Quasimodular forms as solutions of modular differential equations”, Int. J. Number Theory, 16 (2020), 2233–2274, arXiv: 2002.02736 | DOI | MR | Zbl
[14] Hampapura H. R., Mukhi S., “Two-dimensional RCFT's without Kac–Moody symmetry”, J. High Energy Phys., 2016:7 (2016), 138, 19 pp., arXiv: 1605.03314 | DOI | MR | Zbl
[15] Henrici P., Applied and computational complex analysis, v. 2, Wiley Classics Library, Special functions – integral transforms – asymptotics – continued fractions, John Wiley Sons, Inc., New York, 1991 | MR
[16] Hille E., Ordinary differential equations in the complex domain, Dover Publications, Inc., Mineola, NY, 1997 | MR | Zbl
[17] Kaneko M., Koike M., “On modular forms arising from a differential equation of hypergeometric type”, Ramanujan J., 7 (2003), 145–164, arXiv: math.NT/0206022 | DOI | MR | Zbl
[18] Kaneko M., Koike M., “On extremal quasimodular forms”, Kyushu J. Math., 60 (2006), 457–470 | DOI | MR | Zbl
[19] Kaneko M., Nagatomo K., Sakai Y., “The third order modular linear differential equations”, J. Algebra, 485 (2017), 332–352 | DOI | MR | Zbl
[20] Kaneko M., Zagier D., “A generalized Jacobi theta function and quasimodular forms”, The Moduli Space of Curves (Texel Island, 1994), Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995, 165–172 | DOI | MR | Zbl
[21] Kawasetsu K., Sakai Y., “Modular linear differential equations of fourth order and minimal $\mathcal{W}$-algebras”, J. Algebra, 506 (2018), 445–488, arXiv: 1803.02022 | DOI | MR | Zbl
[22] Le Bruyn L., “Bulk irreducibles of the modular group”, J. Algebra Appl., 15 (2016), 1650006, 14 pp. | DOI | MR | Zbl
[23] Lin C.-S., Nie Z., Wei J., “Toda systems and hypergeometric equations”, Trans. Amer. Math. Soc., 370 (2018), 7605–7626, arXiv: 1610.03194 | DOI | MR | Zbl
[24] Lin C.-S., Wei J., Ye D., “Classification and nondegeneracy of ${\rm SU}(n+1)$ Toda system with singular sources”, Invent. Math., 190 (2012), 169–207, arXiv: 1111.0390 | DOI | MR | Zbl
[25] Lin C.-S., Yang Y., Quasimodular forms and modular differential equations which are not apparent at cusps: I, arXiv: 2103.04890
[26] Mason G., “Vector-valued modular forms and linear differential operators”, Int. J. Number Theory, 3 (2007), 377–390 | DOI | MR | Zbl
[27] Mathur S. D., Mukhi S., Sen A., “On the classification of rational conformal field theories”, Phys. Lett. B, 213 (1988), 303–308 | DOI | MR
[28] Pellarin F., “On extremal quasi-modular forms after Kaneko and Koike (with an appendix by Gabriele Nebe)”, Kyushu J. Math., 74 (2020), 401–413, arXiv: 1910.11668 | DOI | MR | Zbl
[29] Sebbar A., Saber H., “Automorphic Schwarzian equations”, Forum Math., 32 (2020), 1621–1636, arXiv: 2002.00493 | DOI | MR | Zbl
[30] Serre J.-P., A course in arithmetic, Graduate Texts in Mathematics, 7, Springer-Verlag, New York – Heidelberg, 1973 | DOI | MR | Zbl
[31] Tuba I., Wenzl H., “Representations of the braid group $B_3$ and of ${\rm SL}(2,Z)$”, Pacific J. Math., 197 (2001), 491–510, arXiv: math.RT/9912013 | DOI | MR | Zbl
[32] Westbury B., On the character varieties of the modular group, Preprint, Nottingham University, 1995
[33] Zagier D., “Elliptic modular forms and their applications”, The 1–2-3 of Modular Forms, Universitext, Springer, Berlin, 2008 | DOI | MR
[34] Zhu Y., “Modular invariance of characters of vertex operator algebras”, J. Amer. Math. Soc., 9 (1996), 237–302, arXiv: math.RT/9912013 | DOI | MR | Zbl