A Quantum $0-\infty$ Law
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022)
Cet article a éte moissonné depuis la source Math-Net.Ru
We give conditions under which a sequence of randomly chosen orthogonal subspaces of a separable Hilbert space generates the whole space.
Keywords:
random Hamiltonians, random geometry, Markov processes.
@article{SIGMA_2022_18_a11,
author = {Michel Bauer},
title = {A {Quantum} $0-\infty$ {Law}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2022},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a11/}
}
Michel Bauer. A Quantum $0-\infty$ Law. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a11/
[1] Deutsch J. M., “Quantum statistical mechanics in a closed system”, Phys. Rev. A, 43 (1991), 2046–2049 | DOI
[2] Ross S., A first course in probability, 10th ed., Pearson, 2019 | MR
[3] Srednicki M., “Chaos and quantum thermalization”, Phys. Rev. E, 50 (1994), 888–901, arXiv: cond-mat/9403051 | DOI