A Quantum $0-\infty$ Law
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give conditions under which a sequence of randomly chosen orthogonal subspaces of a separable Hilbert space generates the whole space.
Keywords: random Hamiltonians, random geometry, Markov processes.
@article{SIGMA_2022_18_a11,
     author = {Michel Bauer},
     title = {A {Quantum} $0-\infty$ {Law}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a11/}
}
TY  - JOUR
AU  - Michel Bauer
TI  - A Quantum $0-\infty$ Law
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a11/
LA  - en
ID  - SIGMA_2022_18_a11
ER  - 
%0 Journal Article
%A Michel Bauer
%T A Quantum $0-\infty$ Law
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a11/
%G en
%F SIGMA_2022_18_a11
Michel Bauer. A Quantum $0-\infty$ Law. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a11/

[1] Deutsch J. M., “Quantum statistical mechanics in a closed system”, Phys. Rev. A, 43 (1991), 2046–2049 | DOI

[2] Ross S., A first course in probability, 10th ed., Pearson, 2019 | MR

[3] Srednicki M., “Chaos and quantum thermalization”, Phys. Rev. E, 50 (1994), 888–901, arXiv: cond-mat/9403051 | DOI