Tau Function and Moduli of Meromorphic Quadratic Differentials
Symmetry, integrability and geometry: methods and applications, Tome 18 (2022) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Bergman tau functions are applied to the study of the Picard group of moduli spaces of quadratic differentials with at most $n$ simple poles on genus $g$ complex algebraic curves. This generalizes our previous results on moduli spaces of holomorphic quadratic differentials.
Keywords: quadratic differentials, tau function
Mots-clés : moduli spaces.
@article{SIGMA_2022_18_a0,
     author = {Dmitry Korotkin and Peter Zograf},
     title = {Tau {Function} and {Moduli} of {Meromorphic} {Quadratic} {Differentials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2022},
     volume = {18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a0/}
}
TY  - JOUR
AU  - Dmitry Korotkin
AU  - Peter Zograf
TI  - Tau Function and Moduli of Meromorphic Quadratic Differentials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2022
VL  - 18
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a0/
LA  - en
ID  - SIGMA_2022_18_a0
ER  - 
%0 Journal Article
%A Dmitry Korotkin
%A Peter Zograf
%T Tau Function and Moduli of Meromorphic Quadratic Differentials
%J Symmetry, integrability and geometry: methods and applications
%D 2022
%V 18
%U http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a0/
%G en
%F SIGMA_2022_18_a0
Dmitry Korotkin; Peter Zograf. Tau Function and Moduli of Meromorphic Quadratic Differentials. Symmetry, integrability and geometry: methods and applications, Tome 18 (2022). http://geodesic.mathdoc.fr/item/SIGMA_2022_18_a0/

[1] Arbarello E., Cornalba M., “The Picard groups of the moduli spaces of curves”, Topology, 26 (1987), 153–171 | DOI | MR | Zbl

[2] Arbarello E., Cornalba M., Griffiths P. A., Geometry of algebraic curves, v. II, Grundlehren der mathematischen Wissenschaften, 268, Springer, Heidelberg, 2011 | DOI | Zbl

[3] Bertola M., Korotkin D., “Hodge and Prym tau functions, Strebel differentials and combinatorial model of $\mathcal {M}_{g,n}$”, Comm. Math. Phys., 378 (2020), 1279–1341, arXiv: 1804.02495 | DOI | MR | Zbl

[4] Fay J. D., Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin – New York, 1973 | DOI | Zbl

[5] Fulton W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, 2nd ed., Springer-Verlag, Berlin, 1998 | DOI | Zbl

[6] Kokotov A., Korotkin D., “Tau-functions on spaces of abelian differentials and higher genus generalizations of Ray–Singer formula”, J. Differential Geom., 82 (2009), 35–100, arXiv: math.SP/0405042 | DOI | MR | Zbl

[7] Kokotov A., Korotkin D., Zograf P., “Isomonodromic tau function on the space of admissible covers”, Adv. Math., 227 (2011), 586–600, arXiv: 0912.3909 | DOI | MR | Zbl

[8] Korotkin D., “Bergman tau-function: from Einstein equations and Dubrovin–Frobenius manifolds to geometry of moduli spaces”, Integrable Systems and Algebraic Geometry, LMS Lecture Note Series, eds. R. Donagi, T. Shaska, Cambridge University Press, Cambridge, 2019, 215–287, arXiv: 1812.03514 | DOI

[9] Korotkin D., Sauvaget A., Zograf P., “Tau functions, Prym–Tyurin classes and loci of degenerate differentials”, Math. Ann., 375 (2019), 213–246, arXiv: 1710.01239 | DOI | MR | Zbl

[10] Korotkin D., Zograf P., “Tau function and moduli of differentials”, Math. Res. Lett., 18 (2011), 447–458, arXiv: 1003.2173 | DOI | MR | Zbl

[11] Korotkin D., Zograf P., “Tau function and the Prym class”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., 593, Amer. Math. Soc., Providence, RI, 2013, 241–261, arXiv: 1302.0577 | DOI | MR | Zbl

[12] Takhtajan L. A., Zograf P. G., “A local index theorem for families of $\overline\partial$-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces”, Comm. Math. Phys., 137 (1991), 399–426 | DOI | MR | Zbl

[13] Wolpert S. A., “Infinitesimal deformations of nodal stable curves”, Adv. Math., 244 (2013), 413–440, arXiv: 1204.3680 | DOI | MR | Zbl