Mots-clés : $c_2$ invariant
@article{SIGMA_2021_17_a99,
author = {Oliver Schnetz and Karen Yeats},
title = {$c_2$ {Invariants} of {Hourglass} {Chains} via {Quadratic} {Denominator} {Reduction}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a99/}
}
TY - JOUR AU - Oliver Schnetz AU - Karen Yeats TI - $c_2$ Invariants of Hourglass Chains via Quadratic Denominator Reduction JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a99/ LA - en ID - SIGMA_2021_17_a99 ER -
Oliver Schnetz; Karen Yeats. $c_2$ Invariants of Hourglass Chains via Quadratic Denominator Reduction. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a99/
[1] Bloch S., Esnault H., Kreimer D., “On motives associated to graph polynomials”, Comm. Math. Phys., 267 (2006), 181–225, arXiv: math.AG/0510011 | DOI
[2] Borinsky M., Schnetz O., Graphical functions in even dimensions, arXiv: 2105.05015
[3] Broadhurst D. J., Kreimer D., “Knots and numbers in $\phi^4$ theory to $7$ loops and beyond”, Internat. J. Modern Phys. C, 6 (1995), 519–524, arXiv: hep-ph/9504352 | DOI
[4] Brown F., On the periods of some Feynman integrals, arXiv: 0910.0114
[5] Brown F., “The massless higher-loop two-point function”, Comm. Math. Phys., 287 (2009), 925–958, arXiv: 0804.1660 | DOI
[6] Brown F., “Feynman amplitudes, coaction principle, and cosmic Galois group”, Commun. Number Theory Phys., 11 (2017), 453–556, arXiv: 1512.06409 | DOI
[7] Brown F., “Notes on motivic periods”, Commun. Number Theory Phys., 11 (2017), 557–655, arXiv: 1512.06410 | DOI
[8] Brown F., Doryn D., Framings for graph hypersurfaces, arXiv: 1301.3056
[9] Brown F., Schnetz O., “A K3 in $\phi^4$”, Duke Math. J., 161 (2012), 1817–1862, arXiv: 1006.4064 | DOI
[10] Brown F., Schnetz O., “Modular forms in quantum field theory”, Commun. Number Theory Phys., 7 (2013), 293–325, arXiv: 1304.5342 | DOI
[11] Brown F., Schnetz O., Yeats K., “Properties of $c_2$ invariants of Feynman graphs”, Adv. Theor. Math. Phys., 18 (2014), 323–362, arXiv: 1203.0188 | DOI
[12] Brown F., Yeats K., “Spanning forest polynomials and the transcendental weight of Feynman graphs”, Comm. Math. Phys., 301 (2011), 357–382, arXiv: 0910.5429 | DOI
[13] Chorney W., Yeats K., “$c_2$ invariants of recursive families of graphs”, Ann. Inst. Henri Poincaré D, 6 (2019), 289–311, arXiv: 1701.01208 | DOI
[14] Denham G., Schulze M., Walther U., “Matroid connectivity and singularities of configuration hypersurfaces”, Lett. Math. Phys., 111 (2021), 11, 67 pp., arXiv: 1902.06507 | DOI
[15] Hu S., Schnetz O., Shaw J., Yeats K., “Further investigations into the graph theory of $\phi^4$-periods and the $c_2$ invariant”, Ann. Inst. Henri Poincaré D (to appear) , arXiv: 1812.08751
[16] Itzykson C., Zuber J. B., Quantum field theory, International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York, 1980
[17] Kompaniets M. V., Panzer E., “Minimally subtracted six-loop renormalization of $O(n)$-symmetric $\phi^4$ theory and critical exponents”, Phys. Rev. D, 96 (2017), 036016, 26 pp., arXiv: 1705.06483 | DOI
[18] Lefschetz S., “On the fixed point formula”, Ann. of Math., 38 (1937), 819–822 | DOI
[19] McKay B. D., Piperno A., “Practical graph isomorphism, II”, J. Symbolic Comput., 60 (2014), 94–112, arXiv: 1301.1493 | DOI
[20] Panzer E., “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals”, Computer Phys. Comm., 188 (2015), 148–166, arXiv: 1403.3385 | DOI
[21] Panzer E., Schnetz O., “The Galois coaction on $\phi^4$ periods”, Commun. Number Theory Phys., 11 (2017), 657–705, arXiv: 1603.04289 | DOI
[22] Patterson E., “On the singular structure of graph hypersurfaces”, Commun. Number Theory Phys., 4 (2010), 659–708, arXiv: 1004.5166 | DOI
[23] Rella C., “An introduction to motivic Feynman integrals”, SIGMA, 17 (2021), 032, 56 pp., arXiv: 2009.00426 | DOI
[24] Schnetz O., “Quantum periods: a census of $\phi^4$-transcendentals”, Commun. Number Theory Phys., 4 (2010), 1–47, arXiv: 0801.2856 | DOI
[25] Schnetz O., “Quantum field theory over $\mathbb F_q$”, Electron. J. Combin., 18 (2011), 102, 23 pp., arXiv: 0909.0905 | DOI
[26] Schnetz O., “Numbers and functions in quantum field theory”, Phys. Rev. D, 97 (2018), 085018, 20 pp., arXiv: 1606.08598 | DOI
[27] Schnetz O., “Geometries in perturbative quantum field theory”, Commun. Number Theory Phys., 15 (2021), 743–791, arXiv: 1905.08083 | DOI
[28] Schnetz O., HyperlogProcedures, Version 0.5, Maple package available at , 2021 https://www.math.fau.de/person/oliver-schnetz/
[29] Yeats K., “Some combinatorial interpretations in perturbative quantum field theory”, Feynman Amplitudes, Periods and Motives, Contemp. Math., 648, Amer. Math. Soc., Providence, RI, 2015, 261–289, arXiv: 1302.0080 | DOI
[30] Yeats K., “A few $c_2$ invariants of circulant graphs”, Commun. Number Theory Phys., 10 (2016), 63–86, arXiv: 1507.06974 | DOI
[31] Yeats K., “A special case of completion invariance for the $c_2$ invariant of a graph”, Canad. J. Math., 70 (2018), 1416–1435, arXiv: 1706.08857 | DOI
[32] Yeats K., “A study on prefixes of $c_2$ invariants”, Algebraic Combinatorics, Resurgence, Mould and Applications (CARMA), v. 2, IRMA Lectures in Mathematics and Theoretical Physics, 32, European Mathematical Society, Berlin, 2020, 367–383, arXiv: 1805.11735 | DOI
[33] Zinn-Justin J., Quantum field theory and critical phenomena, International Series of Monographs on Physics, 77, The Clarendon Press, Oxford University Press, New York, 1989