Quot Schemes for Kleinian Orbifolds
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a finite subgroup $\Gamma\subset {\mathrm{SL}}(2,\mathbb{C})$, we identify fine moduli spaces of certain cornered quiver algebras, defined in earlier work, with orbifold Quot schemes for the Kleinian orbifold $\big[\mathbb{C}^2\!/\Gamma\big]$. We also describe the reduced schemes underlying these Quot schemes as Nakajima quiver varieties for the framed McKay quiver of $\Gamma$, taken at specific non-generic stability parameters. These schemes are therefore irreducible, normal and admit symplectic resolutions. Our results generalise our work [Algebr. Geom. 8 (2021), 680–704] on the Hilbert scheme of points on $\mathbb{C}^2/\Gamma$; we present arguments that completely bypass the ADE classification.
Keywords: Quot scheme, quiver variety, Kleinian orbifold, preprojective algebra, cornering.
@article{SIGMA_2021_17_a98,
     author = {Alastair Craw and S{\o}ren Gammelgaard and \'Ad\'am Gyenge and Bal\'azs Szendr\H{o}i},
     title = {Quot {Schemes} for {Kleinian} {Orbifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a98/}
}
TY  - JOUR
AU  - Alastair Craw
AU  - Søren Gammelgaard
AU  - Ádám Gyenge
AU  - Balázs Szendrői
TI  - Quot Schemes for Kleinian Orbifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a98/
LA  - en
ID  - SIGMA_2021_17_a98
ER  - 
%0 Journal Article
%A Alastair Craw
%A Søren Gammelgaard
%A Ádám Gyenge
%A Balázs Szendrői
%T Quot Schemes for Kleinian Orbifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a98/
%G en
%F SIGMA_2021_17_a98
Alastair Craw; Søren Gammelgaard; Ádám Gyenge; Balázs Szendrői. Quot Schemes for Kleinian Orbifolds. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a98/

[1] Auslander M., “On the purity of the branch locus”, Amer. J. Math., 84 (1962), 116–125 | DOI

[2] Beentjes S. V., Ricolfi A. T., Virtual counts on Quot schemes and the higher rank local DT/PT correspondence, Math. Res. Lett. (to appear) , arXiv: 1811.09859

[3] Bellamy G., Craw A., “Birational geometry of symplectic quotient singularities”, Invent. Math., 222 (2020), 399–468, arXiv: 1811.09979 | DOI

[4] Bellamy G., Schedler T., “Symplectic resolutions of quiver varieties”, Selecta Math. (N.S.), 27 (2021), 36, 50 pp., arXiv: 1602.00164 | DOI

[5] Bourbaki N., Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002

[6] Buchweitz R.-O., “From Platonic solids to preprojective algebras via the McKay correspondence”, Oberwolfach Jahresbericht, Mathematisches Forschungsinstitut Oberwolfach, 2012, 18–28 https://publications.mfo.de/handle/mfo/475

[7] Craw A., Gammelgaard S., Gyenge Á., Szendrői B., “Punctual Hilbert schemes for Kleinian singularities as quiver varieties”, Algebr. Geom., 8 (2021), 680–704, arXiv: 1910.13420 | DOI

[8] Craw A., Ito Y., Karmazyn J., “Multigraded linear series and recollement”, Math. Z., 289 (2018), 535–565, arXiv: 1701.01679 | DOI

[9] Crawley-Boevey W., Holland M. P., “Noncommutative deformations of Kleinian singularities”, Duke Math. J., 92 (1998), 605–635 | DOI

[10] DeHority S., Affinizations of Lorentzian Kac–Moody algebras and Hilbert schemes of points on $K3$ surfaces, arXiv: 2007.04953

[11] Goodman R., Wallach N. R., Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009 | DOI

[12] Gyenge Á., Némethi A., Szendrői B., “Euler characteristics of Hilbert schemes of points on surfaces with simple singularities”, Int. Math. Res. Not., 2017 (2017), 4152–4159, arXiv: 1512.06844 | DOI

[13] Gyenge Á., Némethi A., Szendrői B., “Euler characteristics of Hilbert schemes of points on simple surface singularities”, Eur. J. Math., 4 (2018), 439–524, arXiv: 1512.06848 | DOI

[14] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York – Heidelberg, 1977 | DOI

[15] King A. D., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford, 45 (1994), 515–530 | DOI

[16] Kuznetsov A., “Quiver varieties and Hilbert schemes”, Mosc. Math. J., 7 (2007), 673–697, arXiv: math.AG/0111092 | DOI

[17] Leuschke G. J., Wiegand R., Cohen–Macaulay representations, Mathematical Surveys and Monographs, 181, Amer. Math. Soc., Providence, RI, 2012 | DOI

[18] McKay J., “Graphs, singularities, and finite groups”, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, R.I., 1980, 183–186

[19] Nakajima H., “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76 (1994), 365–416 | DOI

[20] Nakajima H., “Quiver varieties and Kac–Moody algebras”, Duke Math. J., 91 (1998), 515–560 | DOI

[21] Nakajima H., “Geometric construction of representations of affine algebras”, Proceedings of the International Congress of Mathematicians (Beijing, 2002), v. I, Higher Ed. Press, Beijing, 2002, 423–438

[22] Nakajima H., “Quiver varieties and branching”, SIGMA, 5 (2009), 003, 37 pp., arXiv: 0809.2605 | DOI

[23] Reiten I., Van den Bergh M., Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc., 80, 1989, viii+72 pp. | DOI

[24] Rosenfeld B., Geometry of Lie groups, Mathematics and its Applications, 393, Kluwer Academic Publishers Group, Dordrecht, 1997 | DOI

[25] Savage A., Tingley P., “Quiver Grassmannians, quiver varieties and the preprojective algebra”, Pacific J. Math., 251 (2011), 393–429, arXiv: 0909.3746 | DOI