Liouville Action for Harmonic Diffeomorphisms
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we introduce a Liouville action for a harmonic diffeomorphism from a compact Riemann surface to a compact hyperbolic Riemann surface of genus $g\ge 2$. We derive the variational formula of this Liouville action for harmonic diffeomorphisms when the source Riemann surfaces vary with a fixed target Riemann surface.
Keywords: quasi-Fuchsian group, harmonic diffeomorphism.
Mots-clés : Teichmüller space, Liouville action
@article{SIGMA_2021_17_a96,
     author = {Jinsung Park},
     title = {Liouville {Action} for {Harmonic} {Diffeomorphisms}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a96/}
}
TY  - JOUR
AU  - Jinsung Park
TI  - Liouville Action for Harmonic Diffeomorphisms
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a96/
LA  - en
ID  - SIGMA_2021_17_a96
ER  - 
%0 Journal Article
%A Jinsung Park
%T Liouville Action for Harmonic Diffeomorphisms
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a96/
%G en
%F SIGMA_2021_17_a96
Jinsung Park. Liouville Action for Harmonic Diffeomorphisms. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a96/

[1] Ahlfors L. V., “Some remarks on Teichmüller's space of Riemann surfaces”, Ann. of Math., 74 (1961), 171–191 | DOI

[2] Jost J., Compact Riemann surfaces. An introduction to contemporary mathematics, Universitext, 3rd ed., Springer-Verlag, Berlin, 2006 | DOI

[3] Krasnov K., “Holography and Riemann surfaces”, Adv. Theor. Math. Phys., 4 (2000), 929–979, arXiv: hep-th/0005106 | DOI

[4] Krasnov K., Schlenker J.-M., “On the renormalized volume of hyperbolic 3-manifolds”, Comm. Math. Phys., 279 (2008), 637–668, arXiv: math.DG/0607081 | DOI

[5] McIntyre A., Park J., “Tau function and Chern–Simons invariant”, Adv. Math., 262 (2014), 1–58, arXiv: 1209.4158 | DOI

[6] Park J., Takhtajan L. A., Teo L.-P., “Potentials and Chern forms for Weil–Petersson and Takhtajan–{Z}ograf metrics on moduli spaces”, Adv. Math., 305 (2017), 856–894, arXiv: 1508.02102 | DOI

[7] Park J., Teo L.-P., “Liouville action and holography on quasi-Fuchsian deformation spaces”, Comm. Math. Phys., 362 (2018), 717–758, arXiv: 1709.08787 | DOI

[8] Sampson J. H., “Some properties and applications of harmonic mappings”, Ann. Sci. École Norm. Sup. (4), 11 (1978), 211–228 | DOI

[9] Takhtajan L. A., Teo L.-P., “Liouville action and Weil–Petersson metric on deformation spaces, global Kleinian reciprocity and holography”, Comm. Math. Phys., 239 (2003), 183–240, arXiv: math.CV/0204318 | DOI

[10] Tromba A. J., Teichmüller theory in Riemannian geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992 | DOI

[11] Wolf M., “The Teichmüller theory of harmonic maps”, J. Differential Geom., 29 (1989), 449–479 | DOI

[12] Zograf P. G., Takhtadzhyan L. A., “On Liouville's equation, accessory parameters, and the geometry of Teichmüller space for Riemann surfaces of genus $0$”, Math. USSR-Sb., 60 (1988), 143–161 | DOI

[13] Zograf P. G., Takhtadzhyan L. A., “On uniformization of Riemann surfaces and the Weil–Petersson metric on Teichmüller and Schottky spaces”, Math. USSR-Sb., 60 (1988), 297–313 | DOI