Generically, Arnold–Liouville Systems Cannot be Bi-Hamiltonian
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We state and prove that a certain class of smooth functions said to be BH-separable is a meagre subset for the Fréchet topology. Because these functions are the only admissible Hamiltonians for Arnold–Liouville systems admitting a bi-Hamiltonian structure, we get that, generically, Arnold–Liouville systems cannot be bi-Hamiltonian. At the end of the paper, we determine, both as a concrete representation of our general result and as an illustrative list, which polynomial Hamiltonians $H$ of the form $H(x,y)=xy+ax^3+bx^2y+cxy^2+dy^3$ are BH-separable.
Keywords: completely integrable Hamiltonian system, Arnold–Liouville theorem, action-angle coordinates, bi-Hamiltonian system, separability of functions, change of coordinates, meagre set.
Mots-clés : Fréchet topology
@article{SIGMA_2021_17_a95,
     author = {Hassan Boualem and Robert Brouzet},
     title = {Generically, {Arnold{\textendash}Liouville} {Systems} {Cannot} be {Bi-Hamiltonian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a95/}
}
TY  - JOUR
AU  - Hassan Boualem
AU  - Robert Brouzet
TI  - Generically, Arnold–Liouville Systems Cannot be Bi-Hamiltonian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a95/
LA  - en
ID  - SIGMA_2021_17_a95
ER  - 
%0 Journal Article
%A Hassan Boualem
%A Robert Brouzet
%T Generically, Arnold–Liouville Systems Cannot be Bi-Hamiltonian
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a95/
%G en
%F SIGMA_2021_17_a95
Hassan Boualem; Robert Brouzet. Generically, Arnold–Liouville Systems Cannot be Bi-Hamiltonian. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a95/

[1] Abraham R., Marsden J. E., Foundations of mechanics, 2nd ed., Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978

[2] Arnold V., Les méthodes mathématiques de la mécanique classique, Mir, M., 1976

[3] Boualem H., Brouzet R., “Topology of the space of locally separable functions”, Topology Appl., 299 (2021), 107728, 16 pp. | DOI

[4] Brouzet R., “About the existence of recursion operators for completely integrable Hamiltonian systems near a Liouville torus”, J. Math. Phys., 34 (1993), 1309–1313 | DOI

[5] Brouzet R., Molino P., Turiel F. J., “Géométrie des systèmes bihamiltoniens”, Indag. Math. (N.S.), 4 (1993), 269–296 | DOI

[6] Craik A. D. D., “Prehistory of Faà di Bruno's formula”, Amer. Math. Monthly, 112 (2005), 119–130 | DOI

[7] Ehresmann C., “Les connexions infinitésimales dans un espace fibré différentiable”, Colloque de topologie (espaces fibrés) (Bruxelles, 1950), Masson Cie, Paris; Georges Thone, Liège, 1951, 29–55

[8] Falqui G., Pedroni M., “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179, arXiv: nlin.SI/0204029 | DOI

[9] Fernandes R. L., “Completely integrable bi-Hamiltonian systems”, J. Dynam. Differential Equations, 6 (1994), 53–69 | DOI

[10] Gel'fand I. M., Dorfman I. Ja., “Hamiltonian operators and algebraic structures related to them”, Funct. Anal. Appl., 13 (1979), 248–262 | DOI

[11] Hardy M., “Combinatorics of partial derivatives”, Electron. J. Combin., 13 (2006), 1, 13 pp., arXiv: math.CO/0601149 | DOI

[12] Hirsch M. W., Differential topology, Graduate Texts in Mathematics, 33, Springer-Verlag, New York – Heidelberg, 1976 | DOI

[13] Ibort A., Magri F., Marmo G., “Bihamiltonian structures and Stäckel separability”, J. Geom. Phys., 33 (2000), 210–228 | DOI

[14] Johnson W. P., “The curious history of Faà di Bruno's formula”, Amer. Math. Monthly, 109 (2002), 217–234 | DOI

[15] Landi G., Marmo G., Vilasi G., “Recursion operators: meaning and existence for completely integrable systems”, J. Math. Phys., 35 (1994), 808–815 | DOI

[16] Libermann P., Marle C.-M., Géométrie symplectique, bases théoriques de la mécanique, v. I, Publications Mathématiques de l'Université Paris VII, 21, Université de Paris VII, U.E.R. de Mathématiques, Paris, 1986

[17] Ma T.-W., “Higher chain formula proved by combinatorics”, Electron. J. Combin., 16 (2009), 21, 7 pp. | DOI

[18] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI

[19] Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson–Nijenhuis manifolds, Department of Mathematics, University of Milan, 1984 https://boa.unimib.it/retrieve/handle/10281/17656/21540/quaderno3-2008.pdf

[20] Nijenhuis A., “Jacobi-type identities for bilinear differential concomitants of certain tensor fields”, Indag. Math., 58 (1955), 390–403

[21] Praught J., Smirnov R. G., “Andrew Lenard: a mystery unraveled”, SIGMA, 1 (2005), 005, 7 pp., arXiv: nlin.SI/0510055 | DOI

[22] Tempesta P., Tondo G., “Haantjes algebras of classical integrable systems”, Ann. Mat. Pura Appl. (to appear) , arXiv: 1405.5118 | DOI