Mots-clés : real Liouvillan extension, split solvable algebraic group
@article{SIGMA_2021_17_a94,
author = {Teresa Crespo and Zbigniew Hajto and Rouzbeh Mohseni},
title = {Real {Liouvillian} {Extensions} of {Partial} {Differential} {Fields}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a94/}
}
TY - JOUR AU - Teresa Crespo AU - Zbigniew Hajto AU - Rouzbeh Mohseni TI - Real Liouvillian Extensions of Partial Differential Fields JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a94/ LA - en ID - SIGMA_2021_17_a94 ER -
Teresa Crespo; Zbigniew Hajto; Rouzbeh Mohseni. Real Liouvillian Extensions of Partial Differential Fields. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a94/
[1] Bochnak J., Coste M., Roy M.-F., Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 36, Springer-Verlag, Berlin, 1998 | DOI
[2] Borel A., Linear algebraic groups, Graduate Texts in Mathematics, 126, 2nd ed., Springer-Verlag, New York, 1991 | DOI
[3] Colding T. H., Minicozzi II W.P., “Arnold–Thom gradient conjecture for the arrival time”, Comm. Pure Appl. Math., 72 (2019), 1548–1577, arXiv: 1712.05381 | DOI
[4] Colding T. H., Minicozzi II W.P., “Analytical properties for degenerate equations”, Geometric analysis, Progr. Math., 333, Birkhäuser/Springer, Cham, 2020, 57–70, arXiv: 1804.08999 | DOI
[5] Crespo T., Hajto Z., Algebraic groups and differential Galois theory, Graduate Studies in Mathematics, 122, Amer. Math. Soc., Providence, RI, 2011 | DOI
[6] Crespo T., Hajto Z., “Picard–Vessiot theory and the Jacobian problem”, Israel J. Math., 186 (2011), 401–406 | DOI
[7] Crespo T., Hajto Z., “Real Liouville extensions”, Comm. Algebra, 43 (2015), 2089–2093, arXiv: 1206.2283 | DOI
[8] Crespo T., Hajto Z., Sowa-Adamus E., “Galois correspondence theorem for Picard–Vessiot extensions”, Arnold Math. J., 2 (2016), 21–27, arXiv: 1502.08026 | DOI
[9] Crespo T., Hajto Z., van der Put M., “Real and $p$-adic Picard–Vessiot fields”, Math. Ann., 365 (2016), 93–103, arXiv: 1307.2388 | DOI
[10] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry – methods and applications, v. I, Graduate Texts in Mathematics, 93, The geometry of surfaces, transformation groups, and fields, 2nd ed., Springer-Verlag, New York, 1992 | DOI
[11] Gel'fond O. A., Khovanskii A. G., “Real Liouville functions”, Funct. Anal. Appl., 14 (1980), 122–123 | DOI
[12] Gillet H., Gorchinskiy S., Ovchinnikov A., “Parameterized Picard–Vessiot extensions and Atiyah extensions”, Adv. Math., 238 (2013), 322–411, arXiv: 1110.3526 | DOI
[13] 243–283 | DOI
[14] Hajto Z., Mohseni R., Tame topology and non-integrability of dynamical systems, arXiv: 2008.12074
[15] Kamensky M., Pillay A., “Interpretations and differential Galois extensions”, Int. Math. Res. Not., 2016 (2016), 7390–7413 | DOI
[16] Khovanskii A. G., Fewnomials, Translations of Mathematical Monographs, 88, Amer. Math. Soc., Providence, RI, 1991 | DOI
[17] Kolchin E. R., “Algebraic matric groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations”, Ann. of Math., 49 (1948), 1–42 | DOI
[18] Kolchin E. R., “Picard–Vessiot theory of partial differential fields”, Proc. Amer. Math. Soc., 3 (1952), 596–603 | DOI
[19] Kurdyka K., Mostowski T., Parusiński A., “Proof of the gradient conjecture of R Thom”, Ann. of Math., 152 (2000), 763–792, arXiv: math.AG/9906212 | DOI
[20] Łojasiewicz S., “On semi-analytic and subanalytic geometry”, Panoramas of Mathematics (Warsaw, 1992/1994), Banach Center Publ., 34, Polish Acad. Sci. Inst. Math., Warsaw, 1995, 89–104
[21] Maciejewski A. J., Przybylska M., “Differential Galois theory and integrability”, Int. J. Geom. Methods Mod. Phys., 6 (2009), 1357–1390, arXiv: 0912.1046 | DOI
[22] Prestel A., Lectures on formally real fields, Lecture Notes in Math., 1093, Springer-Verlag, Berlin, 1984 | DOI
[23] Prestel A., Roquette P., Formally $p$-adic fields, Lecture Notes in Math., 1050, Springer-Verlag, Berlin, 1984 | DOI
[24] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI