Renormalization in Combinatorially Non-Local Field Theories: the BPHZ Momentum Scheme
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Various combinatorially non-local field theories are known to be renormalizable. Still, explicit calculations of amplitudes are very rare and restricted to matrix field theory. In this contribution I want to demonstrate how the BPHZ momentum scheme in terms of the Connes–Kreimer Hopf algebra applies to any combinatorially non-local field theory which is renormalizable. This algebraic method improves the understanding of known results in noncommutative field theory in its matrix formulation. Furthermore, I use it to provide new explicit perturbative calculations of amplitudes in tensorial field theories of rank $r>2$.
Keywords: non-local field theory, renormalization, Hopf algebras
Mots-clés : multiple polylogarithms.
@article{SIGMA_2021_17_a93,
     author = {Johannes Th\"urigen},
     title = {Renormalization in {Combinatorially} {Non-Local} {Field} {Theories:} the {BPHZ} {Momentum} {Scheme}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a93/}
}
TY  - JOUR
AU  - Johannes Thürigen
TI  - Renormalization in Combinatorially Non-Local Field Theories: the BPHZ Momentum Scheme
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a93/
LA  - en
ID  - SIGMA_2021_17_a93
ER  - 
%0 Journal Article
%A Johannes Thürigen
%T Renormalization in Combinatorially Non-Local Field Theories: the BPHZ Momentum Scheme
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a93/
%G en
%F SIGMA_2021_17_a93
Johannes Thürigen. Renormalization in Combinatorially Non-Local Field Theories: the BPHZ Momentum Scheme. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a93/

[1] Aldous D., “The continuum random tree. I”, Ann. Probab., 19 (1991), 1–28

[2] Ben Geloun J., “Renormalizable models in rank $d\geq 2$ tensorial group field theory”, Comm. Math. Phys., 332 (2014), 117–188, arXiv: 1306.1201 | DOI

[3] Ben Geloun J., Rivasseau V., “A renormalizable 4-dimensional tensor field theory”, Comm. Math. Phys., 318 (2013), 69–109, arXiv: 1111.4997 | DOI

[4] Ben Geloun J., Samary D. O., “3D tensor field theory: renormalization and one-loop $\beta$-functions”, Ann. Henri Poincaré, 14 (2013), 1599–1642, arXiv: 1201.0176 | DOI

[5] Bergbauer C., Kreimer D., “Hopf algebras in renormalization theory: locality and Dyson–Schwinger equations from Hochschild cohomology”, Physics and Number Theory, IRMA Lect. Math. Theor. Phys., 10, Eur. Math. Soc., Zürich, 2006, 133–164, arXiv: hep-th/0506190 | DOI

[6] Blaschke D. N., Gieres F., Heindl F., Schweda M., Wohlgenannt M., “BPHZ renormalization and its application to non-commutative field theory”, Eur. Phys. J. C, 73 (2013), 2566, 16 pp., arXiv: 1307.4650 | DOI

[7] Bogoliubow N. N., Parasiuk O. S., “Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder”, Acta Math., 97 (1957), 227–266 | DOI

[8] Bonzom V., Gurau R., Rivasseau V., “Random tensor models in the large $N$ limit: uncoloring the colored tensor models”, Phys. Rev. D, 85 (2012), 084037, 12 pp., arXiv: 1202.3637 | DOI

[9] Borinsky M., Graphs in perturbation theory. Algebraic structure and asymptotics, Springer Theses, Springer, Cham, 2018, arXiv: 1807.02046 | DOI

[10] Branahl J., Hock A., Wulkenhaar R., Blobbed topological recursion of the quartic Kontsevich model I: Loop equations and conjectures, arXiv: 2008.12201

[11] Branahl J., Hock A., Wulkenhaar R., “Perturbative and geometric analysis of the quartic Kontsevich model”, SIGMA, 17 (2021), 085, 33 pp., arXiv: 2012.02622 | DOI

[12] Broadhurst D. J., Kreimer D., “Exact solutions of Dyson–Schwinger equations for iterated one-loop integrals and propagator-coupling duality”, Nuclear Phys. B, 600 (2001), 403–422, arXiv: hep-th/0012146 | DOI

[13] Carrozza S., Tensorial methods and renormalization in group field theories, Springer Theses, Springer, Cham, 2014, arXiv: 1310.3736 | DOI

[14] Carrozza S., Oriti D., Rivasseau V., “Renormalization of a ${\rm SU}(2)$ tensorial group field theory in three dimensions”, Comm. Math. Phys., 330 (2014), 581–637, arXiv: 1303.6772 | DOI

[15] Carrozza S., Oriti D., Rivasseau V., “Renormalization of tensorial group field theories: Abelian $U(1)$ models in four dimensions”, Comm. Math. Phys., 327 (2014), 603–641, arXiv: 1207.6734 | DOI

[16] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. I The Hopf algebra structure of graphs and the main theorem”, Comm. Math. Phys., 210 (2000), 249–273, arXiv: hep-th/9912092 | DOI

[17] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. II The $\beta$-function, diffeomorphisms and the renormalization group”, Comm. Math. Phys., 216 (2001), 215–241, arXiv: hep-th/0003188 | DOI

[18] Delepouve T., Gurau R., “Phase transition in tensor models”, J. High Energy Phys., 2015:6 (2015), 178, 34 pp., arXiv: 1504.05745 | DOI

[19] Ebrahimi-Fard K., Gracia-Bondía J.M., Patras F., “A Lie theoretic approach to renormalization”, Comm. Math. Phys., 276 (2007), 519–549, arXiv: hep-th/0609035 | DOI

[20] Freidel L., “Group field theory: an overview”, Internat. J. Theoret. Phys., 44 (2005), 1769–1783, arXiv: hep-th/0505016 | DOI

[21] Grosse H., Hock A., Wulkenhaar R., “Solution of the self-dual $\Phi^4$ QFT-model on four-dimensional Moyal space”, J. High Energy Phys., 2020:1 (2020), 081, 16 pp., arXiv: 1908.04543 | DOI

[22] Grosse H., Sako A., Wulkenhaar R., “Exact solution of matricial $\Phi_2^3$ quantum field theory”, Nuclear Phys. B, 925 (2017), 319–347, arXiv: 1610.00526 | DOI

[23] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$-theory on non-commutative ${\mathbb R}^4$ to all orders”, Lett. Math. Phys., 71 (2005), 13–26, arXiv: hep-th/0403232 | DOI

[24] Gurau R., “Colored group field theory”, Comm. Math. Phys., 304 (2011), 69–93, arXiv: 0907.2582 | DOI

[25] Gurau R., “The complete $1/N$ expansion of colored tensor models in arbitrary dimension”, Ann. Henri Poincaré, 13 (2012), 399–423, arXiv: 1102.5759 | DOI

[26] Gurau R., Random tensors, Oxford University Press, Oxford, 2017

[27] Hepp K., “Proof of the Bogoliubov–Parasiuk theorem on renormalization”, Comm. Math. Phys., 2 (1966), 301–326 | DOI

[28] Hock A., Matrix field theory, Ph.D. Thesis, WWU, Münster, 2020, arXiv: 2005.07525

[29] Kreimer D., “On the Hopf algebra structure of perturbative quantum field theories”, Adv. Theor. Math. Phys., 2 (1998), 303–334, arXiv: q-alg/9707029 | DOI

[30] Kreimer D., “Combinatorics of (perturbative) quantum field theory”, Phys. Rep., 363 (2002), 387–424, arXiv: hep-th/0010059 | DOI

[31] Kreimer D., “Anatomy of a gauge theory”, Ann. Physics, 321 (2006), 2757–2781, arXiv: hep-th/0509135 | DOI

[32] Kreimer D., Yeats K., “An étude in non-linear Dyson–Schwinger equations”, Nuclear Phys. B Proc. Suppl., 160 (2006), 116–121, arXiv: hep-th/0605096 | DOI

[33] Lionni L., Marckert J.-F., Iterated foldings of discrete spaces and their limits: candidates for the role of Brownian map in higher dimensions, arXiv: 1908.02259

[34] Lionni L., Thürigen J., “Multi-critical behaviour of 4-dimensional tensor models up to order 6”, Nuclear Phys. B, 941 (2019), 600–635, arXiv: 1707.08931 | DOI

[35] Manchon D., Hopf algebras, from basics to applications to renormalization, arXiv: math.QA/0408405

[36] Marckert J.-F., Mokkadem A., “Limit of normalized quadrangulations: the Brownian map”, Ann. Probab., 34 (2006), 2144–2202, arXiv: math.PR/0403398 | DOI

[37] Oriti D., Spin foam models of quantum spacetime, Ph.D. Thesis, Cambridge University, 2003, arXiv: gr-qc/0311066

[38] Oriti D., “Group field theory as the microscopic description of the quantum spacetime fluid: a new perspective on the continuum in quantum gravity”, PoS Proc. Sci., 2007, PoS(QG-Ph), 030, 38 pp., arXiv: 0710.3276

[39] Oriti D., Ryan J. P., Thürigen J., “Group field theories for all loop quantum gravity”, New J. Phys., 17 (2015), 023042, 46 pp., arXiv: 1409.3150 | DOI

[40] Panzer E., “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals”, Comput. Phys. Comm., 188 (2015), 148–166, arXiv: 1403.3385 | DOI

[41] Panzer E., Wulkenhaar R., “Lambert-$W$ solves the noncommutative $\Phi^4$-model”, Comm. Math. Phys., 374 (2020), 1935–1961, arXiv: 1807.02945 | DOI

[42] Pascalie R., “A solvable tensor field theory”, Lett. Math. Phys., 110 (2019), 925–943, arXiv: 1903.02907 | DOI

[43] Perez A., “The spin foam approach to quantum gravity”, Living Rev. Relativ., 16 (2013), 3, 128 pp., arXiv: 1205.2019 | DOI

[44] Pithis A. G.A., Thürigen J., “Phase transitions in TGFT: functional renormalization group in the cyclic-melonic potential approximation and equivalence to ${\rm O}(N)$ models”, J. High Energy Phys., 2020:12 (2020), 159, 54 pp., arXiv: 2009.13588 | DOI

[45] Raasakka M., Tanasa A., “Combinatorial Hopf algebra for the Ben Geloun–Rivasseau tensor field theory”, Sém. Lothar. Combin., 70 (2013), B70d, 29 pp., arXiv: 1306.1022

[46] Rivasseau V., “Quantum gravity and renormalization: the tensor track”, AIP Conf. Proc., 2012 (2012), 18–29, arXiv: 1112.5104 | DOI

[47] Rivasseau V., Why are tensor field theories asymptotically free?, Europhys. Lett., 111 (2015), 60011, 6 pp., arXiv: 1507.04190 | DOI

[48] Seidel J. J., On two-graphs and Shult's characterization of symplectic and orthogonal geometries over GF(2), T.H.-Report, No 73-WSK-02, Department of Mathematics, Technological University Eindhoven, Eindhoven, 1973

[49] Tanasă A., Kreimer D., “Combinatorial Dyson–Schwinger equations in noncommutative field theory”, J. Noncommut. Geom., 7 (2013), 255–289, arXiv: 0907.2182 | DOI

[50] Tanasă A., Vignes-Tourneret F., “Hopf algebra of non-commutative field theory”, J. Noncommut. Geom., 2 (2008), 125–139, arXiv: 0707.4143 | DOI

[51] Taylor D. E., Some topics in the theory of finite groups, Oxford University, 1971

[52] Thürigen J., Discrete quantum geometries and their effective dimension, Ph.D. Thesis, Humboldt-Universität zu Berlin, 2015, arXiv: 1510.08706

[53] Thürigen J., “Renormalization in combinatorially non-local field theories: the Hopf algebra of 2-graphs”, Math. Phys. Anal. Geom., 24 (2021), 19, 26 pp., arXiv: 2102.12453 | DOI

[54] Wulkenhaar R., “Quantum field theory on noncommutative spaces”, Advances in Noncommutative Geometry, Springer, Cham, 2019, 607–690 | DOI

[55] Zimmermann W., “Convergence of Bogoliubov's method of renormalization in momentum space”, Comm. Math. Phys., 15 (1969), 208–234 | DOI