Cluster Configuration Spaces of Finite Type
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For each Dynkin diagram $D$, we define a “cluster configuration space” ${\mathcal{M}}_D$ and a partial compactification ${\widetilde {\mathcal{M}}}_D$. For $D = A_{n-3}$, we have ${\mathcal{M}}_{A_{n-3}} = {\mathcal{M}}_{0,n}$, the configuration space of $n$ points on ${\mathbb P}^1$, and the partial compactification ${\widetilde {\mathcal{M}}}_{A_{n-3}}$ was studied in this case by Brown. The space ${\widetilde {\mathcal{M}}}_D$ is a smooth affine algebraic variety with a stratification in bijection with the faces of the Chapoton–Fomin–Zelevinsky generalized associahedron. The regular functions on ${\widetilde {\mathcal{M}}}_D$ are generated by coordinates $u_\gamma$, in bijection with the cluster variables of type $D$, and the relations are described completely in terms of the compatibility degree function of the cluster algebra. As an application, we define and study cluster algebra analogues of tree-level open string amplitudes.
Keywords: cluster algebras, generalized associahedron, string amplitudes.
Mots-clés : configuration space
@article{SIGMA_2021_17_a91,
     author = {Nima Arkani-Hamed and Song He and Thomas Lam},
     title = {Cluster {Configuration} {Spaces} of {Finite} {Type}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a91/}
}
TY  - JOUR
AU  - Nima Arkani-Hamed
AU  - Song He
AU  - Thomas Lam
TI  - Cluster Configuration Spaces of Finite Type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a91/
LA  - en
ID  - SIGMA_2021_17_a91
ER  - 
%0 Journal Article
%A Nima Arkani-Hamed
%A Song He
%A Thomas Lam
%T Cluster Configuration Spaces of Finite Type
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a91/
%G en
%F SIGMA_2021_17_a91
Nima Arkani-Hamed; Song He; Thomas Lam. Cluster Configuration Spaces of Finite Type. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a91/

[1] Arkani-Hamed N., Bai Y., He S., Yan G., “Scattering forms and the positive geometry of kinematics, color and the worldsheet”, J. High Energy Phys., 2018:5 (2018), 096, 76 pp., arXiv: 1711.09102 | DOI

[2] Arkani-Hamed N., Bai Y., Lam T., “Positive geometries and canonical forms”, J. High Energy Phys., 2017:11 (2017), 039, 122 pp., arXiv: 1703.04541 | DOI

[3] Arkani-Hamed N., He S., Lam T., “Stringy canonical forms”, J. High Energy Phys., 2021:2 (2021), 069, 59 pp., arXiv: 1912.08707 | DOI

[4] Arkani-Hamed N., He S., Lam T., Thomas H., Binary geometries, generalized particles and strings, and cluster algebras, arXiv: 1912.11764

[5] Arkani-Hamed N., Lam T., Spradlin M., “Non-perturbative geometries for planar ${\mathcal N} = 4$ SYM amplitudes”, J. High Energy Phys., 2021:3 (2021), 065, 14 pp., arXiv: 1912.08222 | DOI

[6] Arkani-Hamed N., Lam T., Spradlin M., “Positive configuration space”, Comm. Math. Phys., 384 (2021), 909–954, arXiv: 2003.03904 | DOI

[7] Assem I., Schiffler R., Shramchenko V., “Cluster automorphisms”, Proc. Lond. Math. Soc., 104 (2012), 1271–1302, arXiv: 1009.0742 | DOI

[8] Bazier-Matte V., Douville G., Mousavand J., Thomas H., Yildirim E., ABHY associahedra and Newton polytopes of $F$-polynomials for finite type cluster algebras, arXiv: 1808.09986

[9] Brown F., Carr S., Schneps L., “The algebra of cell-zeta values”, Compos. Math., 146 (2010), 731–771, arXiv: 0910.0122 | DOI

[10] Brown F., Dupont C., Single-valued integration and superstring amplitudes in genus zero, arXiv: 1910.01107

[11] Brown F. C.S., “Multiple zeta values and periods of moduli spaces $\overline{\mathfrak M}_{0,n}$”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 371–489, arXiv: math.AG/0606419 | DOI

[12] Chapoton F., Fomin S., Zelevinsky A., “Polytopal realizations of generalized associahedra”, Canad. Math. Bull., 45 (2002), 537–566, arXiv: math.CO/0202004 | DOI

[13] Dupont G., “An approach to non-simply laced cluster algebras”, J. Algebra, 320 (2008), 1626–1661, arXiv: math.RT/0512043 | DOI

[14] Fei J., Combinatorics of $F$-polynomials, arXiv: 1909.10151

[15] Fei J., Tropical {$F$}-polynomials and general presentation, arXiv: 1911.10513

[16] Fock V. V., Goncharov A. B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI

[17] Fomin S., Zelevinsky A., “$Y$-systems and generalized associahedra”, Ann. of Math., 158 (2003), 977–1018, arXiv: hep-th/0111053 | DOI

[18] Fomin S., Zelevinsky A., “Cluster algebras. II Finite type classification”, Invent. Math., 154 (2003), 63–121, arXiv: math.RA/0208229 | DOI

[19] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI

[20] Fulton W., Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993 | DOI

[21] Hohlweg C., Lange C. E.M.C., Thomas H., “Permutahedra and generalized associahedra”, Adv. Math., 226 (2011), 608–640, arXiv: 0709.4241 | DOI

[22] Jahn D., Löwe R., Stump C., Minkowski decompositions for generalized associahedra of acyclic type, arXiv: 2005.14065

[23] Lam T., Speyer D. E., “Cohomology of cluster varieties. I Locally acylic case”, Algebra Number Theory (to appear) , arXiv: 1604.06843

[24] Muller G., “Locally acyclic cluster algebras”, Adv. Math., 233 (2013), 207–247, arXiv: 1111.4468 | DOI

[25] Orlik P., Terao H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, 300, Springer-Verlag, Berlin, 1992 | DOI

[26] Padrol A., Palu Y., Pilaud V., Plamondon P.-G., Associahedra for finite type cluster algebras and minimal relations between $g$-vectors, arXiv: 1906.06861

[27] Reading N., “Universal geometric cluster algebras”, Math. Z., 277 (2014), 499–547, arXiv: 1209.3987 | DOI

[28] Shi J. Y., The Kazhdan–Lusztig cells in certain affine Weyl groups, Lecture Notes in Math., 1179, Springer-Verlag, Berlin, 1986 | DOI

[29] Speyer D., Williams L., “The tropical totally positive Grassmannian”, J. Algebraic Combin., 22 (2005), 189–210, arXiv: math.CO/0312297 | DOI

[30] Stanley R. P., “An introduction to hyperplane arrangements”, Geometric Combinatorics, IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007, 389–496 | DOI

[31] Yang S.-W., Zelevinsky A., “Cluster algebras of finite type via Coxeter elements and principal minors”, Transform. Groups, 13 (2008), 855–895, arXiv: 0804.3303 | DOI