Negative Times of the Davey–Stewartson Integrable Hierarchy
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use example of the Davey–Stewartson hierarchy to show that in addition to the standard equations given by Lax operator and evolutions of times with positive numbers, one can consider time evolutions with negative numbers and the same Lax operator. We derive corresponding Lax pairs and integrable equations.
Keywords: commutator identities, integrable hierarchies, reductions.
@article{SIGMA_2021_17_a90,
     author = {Andrei K. Pogrebkov},
     title = {Negative {Times} of the {Davey{\textendash}Stewartson} {Integrable} {Hierarchy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a90/}
}
TY  - JOUR
AU  - Andrei K. Pogrebkov
TI  - Negative Times of the Davey–Stewartson Integrable Hierarchy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a90/
LA  - en
ID  - SIGMA_2021_17_a90
ER  - 
%0 Journal Article
%A Andrei K. Pogrebkov
%T Negative Times of the Davey–Stewartson Integrable Hierarchy
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a90/
%G en
%F SIGMA_2021_17_a90
Andrei K. Pogrebkov. Negative Times of the Davey–Stewartson Integrable Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a90/

[1] Davey A., Stewartson K., “On three-dimensional packets of surface waves”, Proc. Roy. Soc. London Ser. A, 338 (1974), 101–110 | DOI

[2] Faddeev L. D., Takhtajan L. A., Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987 | DOI

[3] Pogrebkov A. K., “Commutator identities on associative algebras and the integrability of nonlinear evolution equations”, Theoret. and Math. Phys., 154 (2008), 405–417, arXiv: nlin.SI/0703018 | DOI

[4] Pogrebkov A. K., “2D Toda chain and associated commutator identity”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 261–269, arXiv: 0711.0969 | DOI

[5] Pogrebkov A. K., “Hirota difference equation and a commutator identity on an associative algebra”, St. Petersburg Math. J., 22 (2010), 473–483 | DOI

[6] Pogrebkov A. K., “Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions”, Theoret. and Math. Phys., 187 (2016), 823–834 | DOI

[7] Pogrebkov A. K., “Commutator identities and integrable hierarchies”, Theoret. and Math. Phys., 205 (2020), 1585–1592 | DOI

[8] Toda M., “Vibration of a chain with nonlinear interaction”, J. Phys. Soc. Japan, 22 (1967), 431–436 | DOI

[9] Toda M., “Wave propagation in anharmonic lattices”, J. Phys. Soc. Japan, 23 (1967), 501–506 | DOI

[10] Zakharov V. E., Shabat A. B., “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Soviet Phys. JETP, 61 (1971), 62–69