@article{SIGMA_2021_17_a90,
author = {Andrei K. Pogrebkov},
title = {Negative {Times} of the {Davey{\textendash}Stewartson} {Integrable} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a90/}
}
Andrei K. Pogrebkov. Negative Times of the Davey–Stewartson Integrable Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a90/
[1] Davey A., Stewartson K., “On three-dimensional packets of surface waves”, Proc. Roy. Soc. London Ser. A, 338 (1974), 101–110 | DOI
[2] Faddeev L. D., Takhtajan L. A., Hamiltonian methods in the theory of solitons, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987 | DOI
[3] Pogrebkov A. K., “Commutator identities on associative algebras and the integrability of nonlinear evolution equations”, Theoret. and Math. Phys., 154 (2008), 405–417, arXiv: nlin.SI/0703018 | DOI
[4] Pogrebkov A. K., “2D Toda chain and associated commutator identity”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 261–269, arXiv: 0711.0969 | DOI
[5] Pogrebkov A. K., “Hirota difference equation and a commutator identity on an associative algebra”, St. Petersburg Math. J., 22 (2010), 473–483 | DOI
[6] Pogrebkov A. K., “Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions”, Theoret. and Math. Phys., 187 (2016), 823–834 | DOI
[7] Pogrebkov A. K., “Commutator identities and integrable hierarchies”, Theoret. and Math. Phys., 205 (2020), 1585–1592 | DOI
[8] Toda M., “Vibration of a chain with nonlinear interaction”, J. Phys. Soc. Japan, 22 (1967), 431–436 | DOI
[9] Toda M., “Wave propagation in anharmonic lattices”, J. Phys. Soc. Japan, 23 (1967), 501–506 | DOI
[10] Zakharov V. E., Shabat A. B., “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Soviet Phys. JETP, 61 (1971), 62–69