Mots-clés : acyclic quivers
@article{SIGMA_2021_17_a9,
author = {Su Ji Hong},
title = {$C${-Vectors} and {Non-Self-Crossing} {Curves} for {Acyclic} {Quivers} of {Finite} {Type}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a9/}
}
Su Ji Hong. $C$-Vectors and Non-Self-Crossing Curves for Acyclic Quivers of Finite Type. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a9/
[1] Bourbaki N., Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002 | DOI | MR
[2] Caldero P., Keller B., “From triangulated categories to cluster algebras. II”, Ann. Sci. École Norm. Sup. (4), 39 (2006), 983–1009 | DOI | MR | Zbl
[3] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations II: applications to cluster algebras”, J. Amer. Math. Soc., 23 (2010), 749–790, arXiv: 0904.0676 | DOI | MR | Zbl
[4] Farb B., Margalit D., A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012 | MR
[5] Felikson A., Tumarkin P., “Acyclic cluster algebras, reflection groups, and curves on a punctured disc”, Adv. Math., 340 (2018), 855–882 | DOI | MR | Zbl
[6] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. I Cluster complexes”, Acta Math., 201 (2008), 83–146, arXiv: math.RA/0608367 | DOI | MR | Zbl
[7] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[8] Garver A., McConville T., Serhiyenko K., “Minimal length maximal green sequences”, Adv. in Appl. Math., 96 (2018), 76–138, arXiv: 1702.07313 | DOI | MR | Zbl
[9] Hubery A., Krause H., “A categorification of non-crossing partitions”, J. Eur. Math. Soc. (JEMS), 18 (2016), 2273–2313, arXiv: 1310.1907 | DOI | MR | Zbl
[10] Igusa K., Schiffler R., “Exceptional sequences and clusters”, J. Algebra, 323 (2010), 2183–2202 | DOI | MR | Zbl
[11] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[12] Lee K., Personal communication
[13] Lee K.-H., Lee K., “A correspondence between rigid modules over path algebras and simple curves on Riemann surfaces”, Exp. Math. (to appear) , arXiv: 1703.09113 | DOI
[14] Nájera Chávez A., “On the $c$-vectors of an acyclic cluster algebra”, Int. Math. Res. Not., 2015 (2015), 1590–1600, arXiv: 1203.1415 | DOI | MR | Zbl
[15] Nakanishi T., Stella S., “Diagrammatic description of $c$-vectors and $d$-vectors of cluster algebras of finite type”, Electron. J. Combin., 21 (2014), Paper 1.3, 107 pp., arXiv: 1210.6299 | DOI | MR | Zbl
[16] Schiffler R., Quiver representations, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2014 | DOI | MR | Zbl
[17] Schofield A., “General representations of quivers”, Proc. London Math. Soc., 65 (1992), 46–64 | DOI | MR | Zbl