$C$-Vectors and Non-Self-Crossing Curves for Acyclic Quivers of Finite Type
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $Q$ be an acyclic quiver and $k$ be an algebraically closed field. The indecomposable exceptional modules of the path algebra $kQ$ have been widely studied. The real Schur roots of the root system associated to $Q$ are the dimension vectors of the indecomposable exceptional modules. It has been shown in [Nájera Chávez A., Int. Math. Res. Not. 2015 (2015), 1590–1600] that for acyclic quivers, the set of positive $c$-vectors and the set of real Schur roots coincide. To give a diagrammatic description of $c$-vectors, K-H. Lee and K. Lee conjectured that for acyclic quivers, the set of c-vectors and the set of roots corresponding to non-self-crossing admissible curves are equivalent as sets [Exp. Math., to appear, arXiv:1703.09113.]. In [Adv. Math. 340 (2018), 855–882], A. Felikson and P. Tumarkin proved this conjecture for 2-complete quivers. In this paper, we prove a revised version of Lee-Lee conjecture for acyclic quivers of type $A$, $D$, and $E_{6}$ and $E_7$.
Keywords: real Schur roots, $c$-vectors, non-self-crossing curves.
Mots-clés : acyclic quivers
@article{SIGMA_2021_17_a9,
     author = {Su Ji Hong},
     title = {$C${-Vectors} and {Non-Self-Crossing} {Curves} for {Acyclic} {Quivers} of {Finite} {Type}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a9/}
}
TY  - JOUR
AU  - Su Ji Hong
TI  - $C$-Vectors and Non-Self-Crossing Curves for Acyclic Quivers of Finite Type
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a9/
LA  - en
ID  - SIGMA_2021_17_a9
ER  - 
%0 Journal Article
%A Su Ji Hong
%T $C$-Vectors and Non-Self-Crossing Curves for Acyclic Quivers of Finite Type
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a9/
%G en
%F SIGMA_2021_17_a9
Su Ji Hong. $C$-Vectors and Non-Self-Crossing Curves for Acyclic Quivers of Finite Type. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a9/

[1] Bourbaki N., Lie groups and Lie algebras. Chapters 4–6. Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002 | DOI | MR

[2] Caldero P., Keller B., “From triangulated categories to cluster algebras. II”, Ann. Sci. École Norm. Sup. (4), 39 (2006), 983–1009 | DOI | MR | Zbl

[3] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations II: applications to cluster algebras”, J. Amer. Math. Soc., 23 (2010), 749–790, arXiv: 0904.0676 | DOI | MR | Zbl

[4] Farb B., Margalit D., A primer on mapping class groups, Princeton Mathematical Series, 49, Princeton University Press, Princeton, NJ, 2012 | MR

[5] Felikson A., Tumarkin P., “Acyclic cluster algebras, reflection groups, and curves on a punctured disc”, Adv. Math., 340 (2018), 855–882 | DOI | MR | Zbl

[6] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. I Cluster complexes”, Acta Math., 201 (2008), 83–146, arXiv: math.RA/0608367 | DOI | MR | Zbl

[7] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl

[8] Garver A., McConville T., Serhiyenko K., “Minimal length maximal green sequences”, Adv. in Appl. Math., 96 (2018), 76–138, arXiv: 1702.07313 | DOI | MR | Zbl

[9] Hubery A., Krause H., “A categorification of non-crossing partitions”, J. Eur. Math. Soc. (JEMS), 18 (2016), 2273–2313, arXiv: 1310.1907 | DOI | MR | Zbl

[10] Igusa K., Schiffler R., “Exceptional sequences and clusters”, J. Algebra, 323 (2010), 2183–2202 | DOI | MR | Zbl

[11] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[12] Lee K., Personal communication

[13] Lee K.-H., Lee K., “A correspondence between rigid modules over path algebras and simple curves on Riemann surfaces”, Exp. Math. (to appear) , arXiv: 1703.09113 | DOI

[14] Nájera Chávez A., “On the $c$-vectors of an acyclic cluster algebra”, Int. Math. Res. Not., 2015 (2015), 1590–1600, arXiv: 1203.1415 | DOI | MR | Zbl

[15] Nakanishi T., Stella S., “Diagrammatic description of $c$-vectors and $d$-vectors of cluster algebras of finite type”, Electron. J. Combin., 21 (2014), Paper 1.3, 107 pp., arXiv: 1210.6299 | DOI | MR | Zbl

[16] Schiffler R., Quiver representations, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, 2014 | DOI | MR | Zbl

[17] Schofield A., “General representations of quivers”, Proc. London Math. Soc., 65 (1992), 46–64 | DOI | MR | Zbl