Mots-clés : quadric
@article{SIGMA_2021_17_a89,
author = {Nigel J. Hitchin},
title = {Spinors, {Twistors} and {Classical} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a89/}
}
Nigel J. Hitchin. Spinors, Twistors and Classical Geometry. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a89/
[1] Atiyah M. F., “Complex fibre bundles and ruled surfaces”, Proc. London Math. Soc., 5 (1955), 407–434 | DOI
[2] Dolgachev I. V., Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012 | DOI
[3] Gawȩdzki K., Tran-Ngoc-Bich P., “Self-duality of the ${\rm SL}_2$ Hitchin integrable system at genus $2$”, Comm. Math. Phys., 196 (1998), 641–670, arXiv: solv-int/9710025 | DOI
[4] Hausel T., Hitchin N. J., Multiplicity algebras for integrable systems, in preparation
[5] Heu V., Loray F., “Hitchin Hamiltonians in genus 2”, Analytic and Algebraic Geometry, Hindustan Book Agency, New Delhi, 2017, 153–172 1506.02404
[6] Hitchin N. J., “Polygons and gravitons”, Math. Proc. Cambridge Philos. Soc., 85 (1979), 465–476 | DOI
[7] Hitchin N. J., “Kählerian twistor spaces”, Proc. London Math. Soc., 43 (1981), 133–150 | DOI
[8] Hitchin N. J., “Complex manifolds and Einstein's equations”, Twistor Geometry and Nonlinear Systems (Primorsko, 1980), Lecture Notes in Math., 970, Springer, Berlin – New York, 1982, 73–99 | DOI
[9] Hitchin N. J., “Monopoles and geodesics”, Comm. Math. Phys., 83 (1982), 579–602 | DOI
[10] Hitchin N. J., “Twistor construction of Einstein metrics”, Global Riemannian Geometry (Durham, 1983), Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1984, 115–125
[11] Hitchin N. J., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI
[12] Hitchin N. J., “Twistor spaces, Einstein metrics and isomonodromic deformations”, J. Differential Geom., 42 (1995), 30–112 | DOI
[13] Hitchin N. J., “Hypercomplex manifolds and the space of framings”, The Geometric Universe: Science, Geometry and the work of Roger Penrose (Oxford, 1996), Oxford University Press, Oxford, 1998, 9–30
[14] Hitchin N. J., “On the hyperkähler/quaternion Kähler correspondence”, Comm. Math. Phys., 324 (2013), 77–106, arXiv: 1210.0424 | DOI
[15] Hitchin N. J., “Manifolds with holonomy $U^*(2m)$”, Rev. Mat. Complut., 27 (2014), 351–368, arXiv: 1403.7133 | DOI
[16] Hitchin N. J., “The central sphere of an ALE space”, Q. J. Math., 72 (2021), 253–276, arXiv: 2008.05915 | DOI
[17] Hitchin N. J., Karlhede A., Lindström U., Roček M., “Hyper-{K}ähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI
[18] Hurtubise J., “The intersection of two quadrics in $P_5(C)$ as a twistor space”, Ann. Global Anal. Geom., 3 (1985), 185–195 | DOI
[19] Narasimhan M. S., Ramanan S., “Moduli of vector bundles on a compact Riemann surface”, Ann. of Math., 89 (1969), 14–51 | DOI
[20] Narasimhan M. S., Ramanan S., “$2\theta$-linear systems on abelian varieties”, Vector Bundles on Algebraic Varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., 11, Tata Inst. Fund. Res., Bombay, 1987, 415–427
[21] Newstead P. E., “Stable bundles of rank $2$ and odd degree over a curve of genus $2$”, Topology, 7 (1968), 205–215 | DOI
[22] Pauly C., “Self-duality of Coble's quartic hypersurface and applications”, Michigan Math. J., 50 (2002), 551–574 | DOI
[23] Penrose R., “The nonlinear graviton”, Gen. Relativity Gravitation, 7 (1976), 171–176 | DOI
[24] van Geemen B., Previato E., “On the Hitchin system”, Duke Math. J., 85 (1996), 659–683, arXiv: alg-geom/9410015 | DOI