Virasoro Action on the $Q$-Functions
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A formula for Schur $Q$-functions is presented which describes the action of the Virasoro operators. For a strict partition, we prove a concise formula for $L_{-k}Q_{\lambda}$, where $L_{-k}$ $(k\geq 1)$ is the Virasoro operator.
Keywords: $Q$-functions, Virasoro operators.
@article{SIGMA_2021_17_a88,
     author = {Kazuya Aokage and Eriko Shinkawa and Hiro-Fumi Yamada},
     title = {Virasoro {Action} on the $Q${-Functions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a88/}
}
TY  - JOUR
AU  - Kazuya Aokage
AU  - Eriko Shinkawa
AU  - Hiro-Fumi Yamada
TI  - Virasoro Action on the $Q$-Functions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a88/
LA  - en
ID  - SIGMA_2021_17_a88
ER  - 
%0 Journal Article
%A Kazuya Aokage
%A Eriko Shinkawa
%A Hiro-Fumi Yamada
%T Virasoro Action on the $Q$-Functions
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a88/
%G en
%F SIGMA_2021_17_a88
Kazuya Aokage; Eriko Shinkawa; Hiro-Fumi Yamada. Virasoro Action on the $Q$-Functions. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a88/

[1] Aokage K., Shinkawa E., Yamada H. F., “Pfaffian identities and Virasoro operators”, Lett. Math. Phys., 110 (2020), 1381–1389 | DOI

[2] Hoffman P. N., Humphreys J. F., Projective representations of the symmetric groups. $Q$-functions and shifted tableaux, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992

[3] Jimbo M., Miwa T., “Solitons and infinite-dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI

[4] Liu X., Yang C., $Q$-polynomial expansion for Brezin–Gross–Witten tau-function, arXiv: 2104.01357

[5] Wakimoto M., Yamada H.-F., “The Fock representations of the Virasoro algebra and the Hirota equations of the modified KP hierarchies”, Hiroshima Math. J., 16 (1986), 427–441 | DOI

[6] Yamada H.-F., “Reduced Fock representation of the Virasoro algebra”, Proceedings of the 35th Symposium on Algebraic Combinatorics, 2018, 38–45 https://hnozaki.jimdofree.com/proceedings-symp-alg-comb/no-35/