Mots-clés : renormalons, non-perturbative corrections
@article{SIGMA_2021_17_a86,
author = {Michael Borinsky and Gerald V. Dunne and Max Meynig},
title = {Semiclassical {Trans-Series} from the {Perturbative} {Hopf-Algebraic} {Dyson{\textendash}Schwinger} {Equations:} $\phi^3$ {QFT} in $6$ {Dimensions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a86/}
}
TY - JOUR AU - Michael Borinsky AU - Gerald V. Dunne AU - Max Meynig TI - Semiclassical Trans-Series from the Perturbative Hopf-Algebraic Dyson–Schwinger Equations: $\phi^3$ QFT in $6$ Dimensions JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a86/ LA - en ID - SIGMA_2021_17_a86 ER -
%0 Journal Article %A Michael Borinsky %A Gerald V. Dunne %A Max Meynig %T Semiclassical Trans-Series from the Perturbative Hopf-Algebraic Dyson–Schwinger Equations: $\phi^3$ QFT in $6$ Dimensions %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a86/ %G en %F SIGMA_2021_17_a86
Michael Borinsky; Gerald V. Dunne; Max Meynig. Semiclassical Trans-Series from the Perturbative Hopf-Algebraic Dyson–Schwinger Equations: $\phi^3$ QFT in $6$ Dimensions. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a86/
[1] Álvarez G., Howls C. J., Silverstone H. J., “Anharmonic oscillator discontinuity formulae up to second-exponentially-small order”, J. Phys. A: Math. Gen., 35 (2002), 4003–4016 | DOI
[2] Anber M. M., Sulejmanpasic T., “The renormalon diagram in gauge theories on $\mathbb R^3\times \mathbb S^1$”, J. High Energy Phys., 2015:1 (2015), 139, 34 pp., arXiv: 1410.0121 | DOI
[3] Aniceto I., Başar G., Schiappa R., “A primer on resurgent transseries and their asymptotics”, Phys. Rep., 809 (2019), 1–135, arXiv: 1802.10441 | DOI
[4] Aniceto I., Schiappa R., Vonk M., “The resurgence of instantons in string theory”, Commun. Number Theory Phys., 6 (2012), 339–496, arXiv: 1106.5922 | DOI
[5] Bellon M. P., “An efficient method for the solution of Schwinger–Dyson equations for propagators”, Lett. Math. Phys., 94 (2010), 77–86, arXiv: 1005.0196 | DOI
[6] Bellon M. P., Clavier P. J., “Alien calculus and a Schwinger–Dyson equation: two-point function with a nonperturbative mass scale”, Lett. Math. Phys., 108 (2018), 391–412, arXiv: 1612.07813 | DOI
[7] Bellon M. P., Russo E. I., “Resurgent analysis of Ward–Schwinger–Dyson equations”, SIGMA, 17 (2021), 075, 18 pp., arXiv: 2011.13822 | DOI
[8] Bellon M. P., Russo E. I., “Ward–Schwinger–Dyson equations in $\phi^3_6$ quantum field theory”, Lett. Math. Phys., 111 (2021), 42, 31 pp., arXiv: 2007.15675 | DOI
[9] Bellon M. P., Schaposnik F. A., “Renormalization group functions for the Wess–Zumino model: up to 200 loops through Hopf algebras”, Nuclear Phys. B, 800 (2008), 517–526, arXiv: 0801.0727 | DOI
[10] Bender C. M., Orszag S. A., Advanced mathematical methods for scientists and engineers, v. I, Asymptotic methods and perturbation theory, Springer-Verlag, New York, 1999 | DOI
[11] Benedetti D., Delporte N., “Remarks on a melonic field theory with cubic interactions”, J. High Energy Phys., 2021:4 (2021), 197, 30 pp., arXiv: 2012.12238 | DOI
[12] Berry M. V., Howls C. J., “Hyperasymptotics for integrals with saddles”, Proc. Roy. Soc. London Ser. A, 434 (1991), 657–675 | DOI
[13] Bersini J., Maiezza A., Vasquez J. C., “Resurgence of the renormalization group equation”, Ann. Physics, 415 (2020), 168126, 15 pp., arXiv: 1910.14507 | DOI
[14] Bogner C., Borowka S., Hahn T., Heinrich G., Jones S. P., Kerner M., von Manteuffel A., Michel M., Panzer E., Papara V., “Loopedia, a database for loop integrals”, Comput. Phys. Commun., 225 (2018), 1–9, arXiv: 1709.01266 | DOI
[15] Borinsky M., “Generating asymptotics for factorially divergent sequences”, Electron. J. Combin., 25 (2018), 4.1, 32 pp., arXiv: 1603.01236 | DOI
[16] Borinsky M., Graphs in perturbation theory: algebraic structure and asymptotics, Springer Theses, Springer, Cham, 2018 | DOI
[17] Borinsky M., Tropical Monte Carlo quadrature for Feynman integrals, arXiv: 2008.12310
[18] Borinsky M., Dunne G. V., “Non-perturbative completion of Hopf-algebraic Dyson–Schwinger equations”, Nuclear Phys. B, 957 (2020), 115096, 17 pp., arXiv: 2005.04265 | DOI
[19] Borinsky M., Gracey J. A., Kompaniets M. V., Schnetz O., “Five-loop renormalization of $\phi^3$ theory with applications to the Lee–Yang edge singularity and percolation theory”, Phys. Rev. D, 103 (2021), 116024, 35 pp., arXiv: 2103.16224 | DOI
[20] Borinsky M., Schnetz O., Graphical functions in even dimensions, arXiv: 2105.05015
[21] Brezin E., Le Guillou J. C., Zinn-Justin J., “Perturbation theory at large order. I The $\phi^{2N}$ interaction”, Phys. Rev. D, 15 (1977), 1544–1557 | DOI
[22] Broadhurst D. J., Kreimer D., “Combinatoric explosion of renormalization tamed by Hopf algebra: 30-loop Padé–Borel resummation”, Phys. Lett. B, 475 (2000), 63–70, arXiv: hep-th/9912093 | DOI
[23] Broadhurst D. J., Kreimer D., “Exact solutions of Dyson–Schwinger equations for iterated one loop integrals and propagator coupling duality”, Nuclear Phys. B, 600 (2001), 403–422, arXiv: hep-th/0012146 | DOI
[24] Caliceti E., Meyer-Hermann M., Ribeca P., Surzhykov A., Jentschura U. D., “From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions”, Phys. Rep., 446 (2007), 1–96, arXiv: 0707.1596 | DOI
[25] Caprini I., Fischer J., Abbas G., Ananthanarayan B., “Perturbative expansions in QCD improved by conformal mappings of the Borel plane”, Perturbation Theory: Advances in Research and Applications, Nova Science Publishers, Inc., Hauppauge, 2018, 211–254, arXiv: 1711.04445
[26] Cardy J. L., “High-energy behavior in $\phi^3$ theory in six-dimensions”, Nuclear Phys. B, 93 (1975), 525–546 | DOI
[27] Clavier P. J., “Borel–Écalle resummation of a two-point function”, Ann. Henri Poincaré, 22 (2021), 2103–2136, arXiv: 1912.03237 | DOI
[28] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem”, J. High Energy Phys., 1999:9 (1999), 024, 8 pp., arXiv: hep-th/9909126 | DOI
[29] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. II The $\beta$-function, diffeomorphisms and the renormalization group”, Comm. Math. Phys., 216 (2001), 215–241, arXiv: hep-th/0003188 | DOI
[30] Cornwall J. M., Morris D. A., “Toy models of nonperturbative asymptotic freedom in $\phi^3$ in six-dimensions”, Phys. Rev. D, 52 (1995), 6074–6086, arXiv: hep-ph/9506293 | DOI
[31] Costin O., “Exponential asymptotics, transseries, and generalized Borel summation for analytic, nonlinear, rank-one systems of ordinary differential equations”, Int. Math. Res. Not., 1995 (1995), 377–417, arXiv: math.CA/0608414 | DOI
[32] Costin O., “On Borel summation and Stokes phenomena for rank-$1$ nonlinear systems of ordinary differential equations”, Duke Math. J., 93 (1998), 289–344, arXiv: math.CA/0608408 | DOI
[33] Costin O., Asymptotics and Borel summability, Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 141, CRC Press, Boca Raton, FL, 2009
[34] Costin O., Dunne G. V., “Physical resurgent extrapolation”, Phys. Lett. B, 808 (2020), 135627, 7 pp., arXiv: 2003.07451 | DOI
[35] Costin O., Dunne G. V., Uniformization and constructive analytic continuation of Taylor series, arXiv: 2009.01962
[36] Courtiel J., Yeats K., “Next-to$^k$ leading log expansions by chord diagrams”, Comm. Math. Phys., 377 (2020), 469–501, arXiv: 1906.05139 | DOI
[37] Damburg R. J., Propin R. K., Graffi S., Grecchi V., Harrell E. M., Čížek J., Paldus J., Silverstone H. J., “$1/R$ expansion for $H_2^+$: analyticity, summability, asymptotics, and calculation of exponentially small terms”, Phys. Rev. Lett., 52 (1984), 1112–1115 | DOI
[38] de Alcantara Bonfim O. F., Kirkham J. E., McKane A. J., “Critical exponents to order $\epsilon^3$ for $\phi^3$ models of critical phenomena in six $\epsilon$-dimension”, J. Phys. A: Math. Gen., 13 (1980), L247–L251 | DOI
[39] de Alcantara Bonfim O. F., Kirkham J. E., McKane A. J., “Critical exponents for the percolation problem and the Yang–Lee edge singularity”, J. Phys. A: Math. Gen., 13 (1981), 2391–2413 | DOI
[40] Delabaere E., Dillinger H., Pham F., “Exact semiclassical expansions for one-dimensional quantum oscillators”, J. Math. Phys., 38 (1997), 6126–6184 | DOI
[41] Delabaere E., Pham F., “Resurgent methods in semi-classical asymptotics”, Ann. Inst. H. Poincaré Phys. Théor., 71 (1999), 1–94
[42] Delbourgo R., Elliott D., McAnally D. S., “Dimensional renormalization in $\phi^{3}$ theory: ladders and rainbows”, Phys. Rev. D, 55 (1997), 5230–5233, arXiv: hep-th/9611150 | DOI
[43] Dondi N. A., Dunne G. V., Reichert M., Sannino F., “Towards the QED beta function and renormalons at $1/N^2_f$ and $1/N^3_f$”, Phys. Rev. D, 102 (2020), 035005, 15 pp., arXiv: 2003.08397 | DOI
[44] Dorigoni D., “An introduction to resurgence, trans-series and alien calculus”, Ann. Physics, 409 (2019), 167914, 38 pp., arXiv: 1411.3585 | DOI
[45] Dunne G. V., Ünsal M., “Resurgence and trans-series in quantum field theory: the $\mathbb{CP}^{N-1}$ model”, J. High Energy Phys., 2012:11 (2012), 170, 85 pp., arXiv: 1210.2423 | DOI
[46] Dunne G. V., Ünsal M., “Generating nonperturbative physics from perturbation theory”, Phys. Rev. D, 89 (2014), 041701, 5 pp., arXiv: 1306.4405 | DOI
[47] Dunne G. V., Ünsal M., “New nonperturbative methods in quantum field theory: from large-$N$ orbifold equivalence to bions and resurgence”, Ann. Rev. Nuclear Part. Sci., 66 (2016), 245–272, arXiv: 1601.03414 | DOI
[48] Écalle J., Les fonctions résurgentes, v. I, Publications Mathématiques d'Orsay 81, 5, Les algèbres de fonctions résurgentes, Université de Paris-Sud, Orsay, 1981
[49] Fei L., Giombi S., Klebanov I. R., “Critical $O(N)$ models in $6-\epsilon$ dimensions”, Phys. Rev. D, 90 (2014), 025018, 19 pp., arXiv: 1404.1094 | DOI
[50] Fisher M. E., “Yang–Lee edge singularity and $\phi^3$ field theory”, Phys. Rev. Lett., 40 (1978), 1610–1613 | DOI
[51] Garoufalidis S., Its A., Kapaev A., Mariño M., “Asymptotics of the instantons of Painlevé I”, Int. Math. Res. Not., 2012 (2012), 561–606, arXiv: 1002.3634 | DOI
[52] Giombi S., Huang R., Klebanov I. R., Pufu S. S., Tarnopolsky G., “$O(N)$ model in $46$: instantons and complex CFTs”, Phys. Rev. D, 101 (2020), 045013, 25 pp., arXiv: 1910.02462 | DOI
[53] Gracey J. A., “Four loop renormalization of $\phi^3$ theory in six dimensions”, Phys. Rev. D, 92 (2015), 025012, 31 pp., arXiv: 1506.03357 | DOI
[54] Gracey J. A., “Asymptotic freedom from the two-loop term of the $\beta$ function in a cubic theory”, Phys. Rev. D, 101 (2020), 125022, 13 pp., arXiv: 2004.14208 | DOI
[55] Gracey J. A., Ryttov T. A., Shrock R., “Renormalization-group behavior of $\phi^3$ theories in $d = 6$ dimensions”, Phys. Rev. D, 102 (2020), 045016, 9 pp., arXiv: 2007.12234 | DOI
[56] Grinstein B., Stone D., Stergiou A., Zhong M., “Challenge to the $a$ theorem in six dimensions”, Phys. Rev. Lett., 113 (2014), 231602, 5 pp., arXiv: 1406.3626 | DOI
[57] Houghton A., Reeve J. S., Wallace D. J., “High order behavior in $\phi^3$ field theories and the percolation problem”, Phys. Rev. B, 15 (1977), 2956–2964 | DOI
[58] Ishikawa K., Morikawa O., Shibata K., Suzuki H., Takaura H., “Renormalon structure in compactified spacetime”, Prog. Theor. Exp. Phys., 2020, 013B01, 14 pp., arXiv: 1909.09579 | DOI
[59] Jentschura U. D., Soff G., “Improved conformal mapping of the Borel plane”, J. Phys. A: Math. Gen., 34 (2001), 1451–1457, arXiv: hep-ph/0006089 | DOI
[60] Kompaniets M. V., Panzer E., “Minimally subtracted six-loop renormalization of $O(n)$-symmetric $\phi^4$ theory and critical exponents”, Phys. Rev. D, 96 (2017), 036016, 26 pp., arXiv: 1705.06483 | DOI
[61] Kreimer D., “On the Hopf algebra structure of perturbative quantum field theories”, Adv. Theor. Math. Phys., 2 (1998), 303–334, arXiv: q-alg/9707029 | DOI
[62] Kreimer D., Yeats K., “An étude in non-linear Dyson–Schwinger equations”, Nuclear Phys. B Proc. Suppl., 160 (2006), 116–121, arXiv: hep-th/0605096 | DOI
[63] Kreimer D., Yeats K., “Recursion and growth estimates in renormalizable quantum field theory”, Comm. Math. Phys., 279 (2008), 401–427, arXiv: hep-th/0612179 | DOI
[64] Krüger O., “Log expansions from combinatorial Dyson–Schwinger equations”, Lett. Math. Phys., 110 (2020), 2175–2202, arXiv: 1906.06131 | DOI
[65] Lapedes A., Mottola E., “Complex path integrals and finite temperature”, Nuclear Phys. B, 203 (1982), 58–92 | DOI
[66] Lipatov L. N., “Divergence of the perturbation theory series and the quasiclassical theory”, Sov. Phys. JETP, 45 (1977), 216–223
[67] Ma E., “Asymptotic freedom and a ‘quark’ model in six-dimension”, Progr. Theoret. Phys., 54 (1975), 1828–1832 | DOI
[68] Macfarlane A. J., Woo G., “$\phi^3$ theory in six dimensions and the renormalization group”, Nuclear Phys. B, 77 (1974), 91–108 ; Erratum Nuclear Phys. B, 86 (1975), 548–548 | DOI | DOI
[69] Mahmoud A. A., Yeats K., Connected chord diagrams and the combinatorics of asymptotic expansions, arXiv: 2010.06550
[70] Maiezza A., Vasquez J. C., “Renormalons in a general quantum field theory”, Ann. Physics, 394 (2018), 84–97, arXiv: 1802.06022 | DOI
[71] Mariño M., “Lectures on non-perturbative effects in large $N$ gauge theories, matrix models and strings”, Fortschr. Phys., 62 (2014), 455–540, arXiv: 1206.6272 | DOI
[72] Mariño M., Reis T., “Renormalons in integrable field theories”, J. High Energy Phys., 2020:4 (2020), 160, 36 pp., arXiv: 1909.12134 | DOI
[73] Mariño M., Reis T., “A new renormalon in two dimensions”, J. High Energy Phys., 2020:7 (2020), 216, 34 pp., arXiv: 1912.06228 | DOI
[74] Mariño M., Reis T., Resurgence and renormalons in the one-dimensional Hubbard model, arXiv: 2006.05131
[75] Marie N., Yeats K., “A chord diagram expansion coming from some Dyson–Schwinger equations”, Commun. Number Theory Phys., 7 (2013), 251–291, arXiv: 1210.5457 | DOI
[76] McKane A. J., Vacuum instability in scalar field theories, Ph.D. Thesis, University of Southampton, 1978
[77] McKane A. J., “Vacuum instability in scalar field theories”, Nuclear Phys. B, 152 (1979), 166–188 | DOI
[78] McKane A. J., “Perturbation expansions at large order: results for scalar field theories revisite”, J. Phys. A: Math. Theor., 52 (2019), 055401, 23 pp., arXiv: 1807.00656 | DOI
[79] Misumi T., Nitta M., Sakai N., “Resurgence in sine-Gordon quantum mechanics: exact agreement between multi-instantons and uniform WKB”, J. High Energy Phys., 2015:9 (2015), 157, 41 pp., arXiv: 1507.00408 | DOI
[80] Mitschi C., Sauzin D., Divergent series, summability and resurgence, v. I, Lecture Notes in Math., 2153, Monodromy and resurgence, Springer, Cham, 2016 | DOI
[81] Panzer E., “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals”, Comput. Phys. Commun., 188 (2015), 148–166, arXiv: 1403.3385 | DOI
[82] Sauzin D., Introduction to 1-summability and resurgence, arXiv: 1405.0356
[83] Schnetz O., “Graphical functions and single-valued multiple polylogarithms”, Commun. Number Theory Phys., 8 (2014), 589–675, arXiv: 1302.6445 | DOI
[84] Schnetz O., “The Galois coaction on the electron anomalous magnetic moment”, Commun. Number Theory Phys., 12 (2018), 335–354, arXiv: 1711.05118 | DOI
[85] Schnetz O., “Numbers and functions in quantum field theory”, Phys. Rev. D, 97 (2018), 085018, 20 pp., arXiv: 1606.08598 | DOI
[86] Sloane N. J.A., The on-line encyclopedia of integer sequences, http://oeis.org/
[87] Stahl H., “The convergence of Padé approximants to functions with branch points”, J. Approx. Theory, 91 (1997), 139–204 | DOI
[88] van Baalen G., Kreimer D., Uminsky D., Yeats K., “The QED $\beta$-function from global solutions to Dyson–Schwinger equations”, Ann. Physics, 324 (2009), 205–219, arXiv: 0805.0826 | DOI
[89] van Baalen G., Kreimer D., Uminsky D., Yeats K., “The QCD $\beta$-function from global solutions to Dyson–Schwinger equations”, Ann. Physics, 325 (2010), 300–324, arXiv: 0906.1754 | DOI
[90] Yeats K., Growth estimates for Dyson–Schwinger equations, Ph.D. Thesis, University of Waterloo, 2008, arXiv: 0810.2249
[91] Yeats K., A combinatorial perspective on quantum field theory, SpringerBriefs in Mathematical Physics, 15, Springer, Cham, 2017 | DOI
[92] Zinn-Justin J., “Expansion around instantons in quantum mechanics”, J. Math. Phys., 22 (1981), 511–520 | DOI
[93] Zinn-Justin J., Quantum field theory and critical phenomena, International Series of Monographs on Physics, 77, The Clarendon Press, Oxford University Press, New York, 1989
[94] Zinn-Justin J., Jentschura U. D., “Multi-instantons and exact results. I. Conjectures, WKB expansions, and instanton interactions”, Ann. Physics, 313 (2004), 197–267, arXiv: quant-ph/0501136 | DOI
[95] Zinn-Justin J., Jentschura U. D., “Multi-instantons and exact results. II Specific cases, higher-order effects, and numerical calculations”, Ann. Physics, 313 (2004), 269–325 | DOI