Mots-clés : pre-Lie algebras
@article{SIGMA_2021_17_a85,
author = {Lo{\"\i}c Foissy},
title = {Algebraic {Structures} on {Typed} {Decorated} {Rooted} {Trees}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a85/}
}
Loïc Foissy. Algebraic Structures on Typed Decorated Rooted Trees. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a85/
[1] Bergeron F., Labelle G., Leroux P., Combinatorial species and tree-like structures, Encyclopedia of Mathematics and its Applications, 67, Cambridge University Press, Cambridge, 1998 | DOI
[2] Bremner M. R., Dotsenko V., Algebraic operads. An algorithmic companion, CRC Press, Boca Raton, FL, 2016
[3] Bruned Y., Singular KPZ type equations, https://tel.archives-ouvertes.fr/tel-01306427
[4] Bruned Y., Chandra A., Chevyrev I., Hairer M., “Renormalising SPDEs in regularity structures”, J. Eur. Math. Soc. (JEMS), 23 (2021), 869–947, arXiv: 1711.10239 | DOI
[5] Bruned Y., Hairer M., Zambotti L., “Algebraic renormalisation of regularity structures”, Invent. Math., 215 (2019), 1039–1156, arXiv: 1610.08468 | DOI
[6] Bruned Y., Manchon D., Algebraic deformation for SPDEs, arXiv: 2011.05907
[7] Calaque D., Ebrahimi-Fard K., Manchon D., “Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series”, Adv. in Appl. Math., 47 (2011), 282–308, arXiv: 0806.2238 | DOI
[8] Chapoton F., “Un endofoncteur de la catégorie des opérades”, Dialgebras and Related Operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 105–110 | DOI
[9] Chapoton F., Livernet M., “Pre-Lie algebras and the rooted trees operad”, Int. Math. Res. Not., 2001 (2001), 395–408, arXiv: math.QA/0002069 | DOI
[10] Connes A., Kreimer D., “Hopf algebras, renormalization and noncommutative geometry”, Comm. Math. Phys., 199 (1998), 203–242, arXiv: hep-th/9808042 | DOI
[11] Dotsenko V., Griffin J., “Cacti and filtered distributive laws”, Algebr. Geom. Topol., 14 (2014), 3185–3225, arXiv: 1109.5345 | DOI
[12] Foissy L., Algebraic structures associated to operads, arXiv: 1702.05344
[13] Foissy L., Generalized prelie and permutative algebras, arXiv: 2104.00909
[14] Grossman R., Larson R. G., “Hopf-algebraic structure of combinatorial objects and differential operators”, Israel J. Math., 72 (1990), 109–117 | DOI
[15] Hoffman M. E., “Combinatorics of rooted trees and Hopf algebras”, Trans. Amer. Math. Soc., 355 (2003), 3795–3811, arXiv: math.CO/0201253 | DOI
[16] Livernet M., “A rigidity theorem for pre-Lie algebras”, J. Pure Appl. Algebra, 207 (2006), 1–18, arXiv: math.QA/0504296 | DOI
[17] Loday J.-L., Vallette B., Algebraic operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, Heidelberg, 2012 | DOI
[18] Manchon D., Zhang Y., Free pre-Lie family algebras, arXiv: 2003.00917
[19] Markl M., Shnider S., Stasheff J., Operads in algebra, topology and physics, Mathematical Surveys and Monographs, 96, Amer. Math. Soc., Providence, RI, 2002 | DOI
[20] Mathar R. J., Topologically distinct sets of non-intersecting circles in the plane, arXiv: 1603.00077
[21] Oudom J.-M., Guin D., “Sur l'algèbre enveloppante d'une algèbre pré-Lie”, C. R. Math. Acad. Sci. Paris, 340 (2005), 331–336 | DOI
[22] Oudom J.-M., Guin D., “On the Lie enveloping algebra of a pre-Lie algebra”, J. K-Theory, 2 (2008), 147–167, arXiv: math.QA/0404457 | DOI
[23] Panaite F., “Relating the Connes–Kreimer and Grossman–Larson Hopf algebras built on rooted trees”, Lett. Math. Phys., 51 (2000), 211–219, arXiv: math.QA/0003074 | DOI
[24] Sloane N. J.A., The on-line encyclopedia of integer sequences, http://oeis.org/
[25] Zhang Y., Gao X., Guo L., “Matching Rota–Baxter algebras, matching dendriform algebras and matching pre-Lie algebras”, J. Algebra, 552 (2020), 134–170, arXiv: 1909.10577 | DOI