Mots-clés : exact solutions
@article{SIGMA_2021_17_a84,
author = {Johannes Branahl and Alexander Hock and Raimar Wulkenhaar},
title = {Perturbative and {Geometric} {Analysis} of the {Quartic} {Kontsevich} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a84/}
}
TY - JOUR AU - Johannes Branahl AU - Alexander Hock AU - Raimar Wulkenhaar TI - Perturbative and Geometric Analysis of the Quartic Kontsevich Model JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a84/ LA - en ID - SIGMA_2021_17_a84 ER -
%0 Journal Article %A Johannes Branahl %A Alexander Hock %A Raimar Wulkenhaar %T Perturbative and Geometric Analysis of the Quartic Kontsevich Model %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a84/ %G en %F SIGMA_2021_17_a84
Johannes Branahl; Alexander Hock; Raimar Wulkenhaar. Perturbative and Geometric Analysis of the Quartic Kontsevich Model. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a84/
[1] Adler M., van Moerbeke P., “A matrix integral solution to two-dimensional $W_p$-gravity”, Comm. Math. Phys., 147 (1992), 25–56 | DOI
[2] Belliard R., Charbonnier S., Eynard B., Garcia-Failde E., Topological recursion for generalised Kontsevich graphs and $r$-spin intersection numbers, arXiv: 2105.08035
[3] Bernardi O., Fusy E., “Bijections for planar maps with boundaries”, J. Combin. Theory Ser. A, 158 (2018), 176–227, arXiv: 1510.05194 | DOI
[4] Borot G., Garcia-Failde E., “Simple maps, Hurwitz numbers, and topological recursion”, Comm. Math. Phys., 380 (2020), 581–654, arXiv: 1710.07851 | DOI
[5] Borot G., Shadrin S., “Blobbed topological recursion: properties and applications”, Math. Proc. Cambridge Philos. Soc., 162 (2017), 39–87, arXiv: 1502.00981 | DOI
[6] Bouchard V., Eynard B., “Think globally, compute locally”, J. High Energy Phys., 2013:2 (2013), 143, 35 pp., arXiv: 1211.2302 | DOI
[7] Bouchard V., Hutchinson J., Loliencar P., Meiers M., Rupert M., “A generalized topological recursion for arbitrary ramification”, Ann. Henri Poincaré, 15 (2014), 143–169, arXiv: 1208.6035 | DOI
[8] Bouchard V., Klemm A., Mariño M., Pasquetti S., “Remodeling the B-model”, Comm. Math. Phys., 287 (2009), 117–178, arXiv: 0709.1453 | DOI
[9] Bouchard V., Mariño M., “Hurwitz numbers, matrix models and enumerative geometry”, From Hodge Theory to Integrability and TQFT $tt^*$-Geometry, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008, 263–283, arXiv: 0709.1458 | DOI
[10] Branahl J., Hock A., Wulkenhaar R., Blobbed topological recursion of the quartic Kontsevich model I: Loop equations and conjectures, arXiv: 2008.12201
[11] Brézin E., Itzykson C., Parisi G., Zuber J. B., “Planar diagrams”, Comm. Math. Phys., 59 (1978), 35–51 | DOI
[12] Broadhurst D. J., Kreimer D., “Association of multiple zeta values with positive knots via Feynman diagrams up to $9$ loops”, Phys. Lett. B, 393 (1997), 403–412, arXiv: hep-th/9609128 | DOI
[13] Broadhurst D. J., Kreimer D., “Exact solutions of Dyson–Schwinger equations for iterated one loop integrals and propagator coupling duality”, Nuclear Phys. B, 600 (2001), 403–422, arXiv: hep-th/0012146 | DOI
[14] Chekhov L., Eynard B., Orantin N., “Free energy topological expansion for the 2-matrix model”, J. High Energy Phys., 2006:12 (2006), 053, 31 pp., arXiv: math-ph/0603003 | DOI
[15] Connes A., Kreimer D., “Renormalization in quantum field theory and the Riemann–Hilbert problem. I The Hopf algebra structure of graphs and the main theorem”, Comm. Math. Phys., 210 (2000), 249–273, arXiv: hep-th/9912092 | DOI
[16] de Jong J., Hock A., Wulkenhaar R., “Nested Catalan tables and a recursion relation in noncommutative quantum field theory”, Ann. Henri Poincaré (to appear) , arXiv: 1904.11231
[17] Eynard B., Counting surfaces, Progress in Mathematical Physics, 70, Birkhäuser/Springer, Cham, 2016 | DOI
[18] Eynard B., Orantin N., “Invariants of algebraic curves and topological expansion”, Commun. Number Theory Phys., 1 (2007), 347–452, arXiv: math-ph/0702045 | DOI
[19] Eynard B., Orantin N., Algebraic methods in random matrices and enumerative geometry, arXiv: 0811.3531
[20] Grosse H., Hock A., Wulkenhaar R., A Laplacian to compute intersection numbers on $\overline{\mathcal{M}}_{g,n}$ and correlation functions in NCQFT, arXiv: 1903.12526
[21] Grosse H., Hock A., Wulkenhaar R., Solution of all quartic matrix models, arXiv: 1906.04600
[22] Grosse H., Hock A., Wulkenhaar R., “Solution of the self-dual $\Phi^4$ QFT-model on four-dimensional Moyal space”, J. High Energy Phys., 2020:1 (2020), 081, 16 pp., arXiv: 1908.04543 | DOI
[23] Grosse H., Wulkenhaar R., “Renormalization of noncommutative quantum field theory”, An Invitation to Noncommutative Geometry, World Sci. Publ., Hackensack, NJ, 2008, 129–168, arXiv: 0909.1389 | DOI
[24] Grosse H., Wulkenhaar R., “Self-dual noncommutative $\phi^4$-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory”, Comm. Math. Phys., 329 (2014), 1069–1130, arXiv: 1205.0465 | DOI
[25] Hock A., Matrix field theory, Ph.D. Thesis, WWU, Münster, 2020, arXiv: 2005.07525
[26] Hock A., Wulkenhaar R., Blobbed topological recursion of the quartic Kontsevich model II: Genus = 0, arXiv: 2103.13271
[27] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147 (1992), 1–23 | DOI
[28] Kreimer D., “Renormalization and knot theory”, J. Knot Theory Ramifications, 6 (1997), 479–581, arXiv: q-alg/9607022 | DOI
[29] Kreimer D., “On the Hopf algebra structure of perturbative quantum field theories”, Adv. Theor. Math. Phys., 2 (1998), 303–334, arXiv: q-alg/9707029 | DOI
[30] Mirzakhani M., “Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces”, Invent. Math., 167 (2007), 179–222 | DOI
[31] Panzer E., Wulkenhaar R., “Lambert-$W$ solves the noncommutative $\Phi^4$-model”, Comm. Math. Phys., 374 (2020), 1935–1961, arXiv: 1807.02945 | DOI
[32] Schürmann J., Wulkenhaar R., An algebraic approach to a quartic analogue of the Kontsevich model, arXiv: 1912.03979
[33] Witten E., “Algebraic geometry associated with matrix models of two-dimensional gravity”, Topological Methods in Modern Mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, 235–269
[34] Zhukovsky N., “Über die Konturen der Tragflächen der Drachenflieger”, Z. Flugtechnik Motorluftschiffahrt, 1 (1910), 281–284