@article{SIGMA_2021_17_a83,
author = {Stjepan Meljanac and Rina \v{S}trajn},
title = {Exponential {Formulas,} {Normal} {Ordering} and the {Weyl{\textendash}Heisenberg} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a83/}
}
TY - JOUR AU - Stjepan Meljanac AU - Rina Štrajn TI - Exponential Formulas, Normal Ordering and the Weyl–Heisenberg Algebra JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a83/ LA - en ID - SIGMA_2021_17_a83 ER -
Stjepan Meljanac; Rina Štrajn. Exponential Formulas, Normal Ordering and the Weyl–Heisenberg Algebra. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a83/
[1] Amelino-Camelia G., Lukierski J., Nowicki A., “$\kappa$-deformed covariant phase space and quantum-gravity uncertainty relations”, Phys. Atomic Nuclei, 61 (1998), 1811–1815, arXiv: hep-th/9706031
[2] Aschieri P., Borowiec A., Pachoł A., “Dispersion relations in $\kappa$-noncommutative cosmology”, J. Cosmol. Astropart. Phys., 2021:4 (2021), 025, 20 pp., arXiv: 2009.01051 | DOI
[3] Battisti M. V., Meljanac S., “Modification of Heisenberg uncertainty relations in noncommutative Snyder space-time geometry”, Phys. Rev. D, 79 (2009), 067505, 4 pp., arXiv: 0812.3755 | DOI
[4] Battisti M. V., Meljanac S., “Scalar field theory on noncommutative Snyder spacetime”, Phys. Rev. D, 82 (2010), 024028, 9 pp., arXiv: 1003.2108 | DOI
[5] Borowiec A., Meljanac D., Meljanac S., Pachoł A., “Interpolations between Jordanian twists induced by coboundary twists”, SIGMA, 15 (2019), 054, 22 pp., arXiv: 1812.05535 | DOI
[6] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994
[7] Daszkiewicz M., Lukierski J., Woronowicz M., “Towards quantum noncommutative $\kappa$-deformed field theory”, Phys. Rev. D, 77 (2008), 105007, 10 pp., arXiv: 0708.1561 | DOI
[8] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI
[9] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the Planck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI
[10] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Twisted statistics in $\kappa$-Minkowski spacetime”, Phys. Rev. D, 77 (2008), 105010, 6 pp., arXiv: 0802.1576 | DOI
[11] Jurić T., Kovačević D., Meljanac S., “$\kappa$-deformed phase space, Hopf algebroid and twisting”, SIGMA, 10 (2014), 106, 18 pp., arXiv: 1402.0397 | DOI
[12] Jurić T., Meljanac S., Štrajn R., “$\kappa$-Poincaré–Hopf algebra and Hopf algebroid structure of phase space from twist”, Phys. Lett. A, 377 (2013), 2472–2476, arXiv: 1303.0994 | DOI
[13] Lukierski J., Meljanac D., Meljanac S., Pikutić D., Woronowicz M., “Lie-deformed quantum Minkowski spaces from twists: Hopf-algebraic versus Hopf-algebroid approach”, Phys. Lett. B, 777 (2018), 1–7, arXiv: 1710.09772 | DOI
[14] Lukierski J., Meljanac S., Woronowicz M., “Quantum twist-deformed $D=4$ phase spaces with spin sector and Hopf algebroid structures”, Phys. Lett. B, 789 (2019), 82–87, arXiv: 1811.07365 | DOI
[15] Lukierski J., Nowicki A., Ruegg H., “New quantum Poincaré algebra and $\kappa$-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI
[16] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “$q$-deformation of Poincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI
[17] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI
[18] Majid S., Ruegg H., “Bicrossproduct structure of $\kappa$-Poincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9405107 | DOI
[19] Mansour T., Schork M., Commutation relations, normal ordering, and Stirling numbers, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2016
[20] Meljanac D., Meljanac S., Mignemi S., Štrajn R., “$\kappa$-deformed phase spaces, Jordanian twists, Lorentz–Weyl algebra, and dispersion relations”, Phys. Rev. D, 99 (2019), 126012, 12 pp., arXiv: 1903.08679 | DOI
[21] Meljanac D., Meljanac S., Pikutić D., Gupta K. S., “Twisted statistics and the structure of Lie-deformed Minkowski spaces”, Phys. Rev. D, 96 (2017), 105008, 6 pp., arXiv: 1703.09511 | DOI
[22] Meljanac S., Meljanac D., Pachoł A., Pikutić D., “Remarks on simple interpolation between Jordanian twists”, J. Phys. A: Math. Theor., 50 (2017), 265201, 11 pp., arXiv: 1612.07984 | DOI
[23] Meljanac S., Meljanac D., Samsarov A., Stojić M., Lie algebraic deformations of Minkowski space with Poincaré algebra
[24] Meljanac S., Meljanac D., Samsarov A., Stojić M., “$\kappa$-deformed Snyder spacetime”, Modern Phys. Lett. A, 25 (2010), 579–590, arXiv: 0912.5087 | DOI
[25] Meljanac S., Meljanac D., Samsarov A., Stojić M., “Kappa Snyder deformations of Minkowski spacetime, realizations and Hopf algebra”, Phys. Rev. D, 83 (2011), 065009, 16 pp., arXiv: 1102.1655 | DOI
[26] Meljanac S., Škoda Z., Svrtan D., “Exponential formulas and Lie algebra type star products”, SIGMA, 8 (2012), 013, 15 pp., arXiv: 1006.0478 | DOI
[27] Meljanac S., Škoda Z., Štrajn R., “Generalized Heisenberg algebra, realizations of the ${\mathfrak{gl}}(n)$ algebra and applications”, Rep. Math. Phys. (to appear)
[28] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI
[29] Viskov O. V., “On the ordered form of a non-commutative binomial”, Russian Math. Surveys, 46 (1991), 258–259 | DOI
[30] Viskov O. V., “Expansion in powers of a noncommutative binomial”, Proc. Steklov Inst. Math., 216 (1997), 63–69
[31] Viskov O. V., “An approach to ordering”, Dokl. Math., 57 (1998), 69–71