@article{SIGMA_2021_17_a82,
author = {Lee-Peng Teo},
title = {Resolvent {Trace} {Formula} and {Determinants} of $n$ {Laplacians} on {Orbifold} {Riemann} {Surfaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a82/}
}
Lee-Peng Teo. Resolvent Trace Formula and Determinants of $n$ Laplacians on Orbifold Riemann Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a82/
[1] Alekseevskii V. P., “On functions similar to the gamma function”, Comm. Proc. Kharkov Math. Soc., 1 (1889), 169–238
[2] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI
[3] Barnes E. W., “The theory of the $G$-function”, Q. J. Math., 31 (1900), 264–314
[4] D'Hoker E., Phong D. H., “On determinants of Laplacians on Riemann surfaces”, Comm. Math. Phys., 104 (1986), 537–545 | DOI
[5] Efrat I., “Determinants of Laplacians on surfaces of finite volume”, Comm. Math. Phys., 119 (1988), 443–451 | DOI
[6] Fay J. D., “Fourier coefficients of the resolvent for a Fuchsian group”, J. Reine Angew. Math., 293–294 (1977), 143–203 | DOI
[7] Fischer J., An approach to the Selberg trace formula via the Selberg zeta-function, Lecture Notes in Math., 1253, Springer-Verlag, Berlin, 1987 | DOI
[8] Freixas i Montplet G., von Pippich A.-M., “Riemann–Roch isometries in the non-compact orbifold setting”, J. Eur. Math. Soc. (JEMS), 22 (2020), 3491–3564, arXiv: 1604.00284 | DOI
[9] Gong D. G., “Zeta-determinant and torsion functions on Riemann surfaces of finite volume”, Manuscripta Math., 86 (1995), 435–454 | DOI
[10] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 6th ed., Academic Press Inc., San Diego, CA, 2000
[11] Hejhal D. A., The Selberg trace formula for ${\rm PSL}(2,\mathbb R)$, v. 1, Lecture Notes in Math., 548, Springer-Verlag, Berlin, 1976 | DOI
[12] Hejhal D. A., The Selberg trace formula for ${\rm PSL}(2, \mathbb R)$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983 | DOI
[13] Iwaniec H., Spectral methods of automorphic forms, Graduate Studies in Mathematics, 53, 2nd ed., Amer. Math. Soc., Providence, RI, 2002 | DOI
[14] Koyama S., “Determinant expression of Selberg zeta functions. I”, Trans. Amer. Math. Soc., 324 (1991), 149–168 | DOI
[15] Koyama S., “Determinant expression of Selberg zeta functions. III”, Proc. Amer. Math. Soc., 113 (1991), 303–311 | DOI
[16] McIntyre A., Takhtajan L. A., “Holomorphic factorization of determinants of Laplacians on Riemann surfaces and a higher genus generalization of Kronecker's first limit formula”, Geom. Funct. Anal., 16 (2006), 1291–1323, arXiv: math.CV/0410294 | DOI
[17] Sarnak P., “Determinants of Laplacians”, Comm. Math. Phys., 110 (1987), 113–120 | DOI
[18] Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N.S.), 20 (1956), 47–87
[19] Selberg A., “Göttingen lectures on harmonic analysis”, Alte Selberg Collected Papers, Springer Collected Works in Mathematics, Springer-Verlag, Berlin, 1989, 626–675
[20] Takhtajan L. A., Zograf P. G., “A local index theorem for families of $\overline\partial$-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces”, Comm. Math. Phys., 137 (1991), 399–426 | DOI
[21] Takhtajan L. A., Zograf P. G., “Local index theorem for orbifold Riemann surfaces”, Lett. Math. Phys., 109 (2019), 1119–1143, arXiv: 1701.00771 | DOI
[22] Teo L.-P., “Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points”, Lett. Math. Phys., 110 (2020), 61–82, arXiv: 1901.07898 | DOI
[23] Venkov A. B., “Spectral theory of automorphic functions”, Proc. Steklov Inst. Math., 153 (1982), 1–163
[24] Venkov A. B., Kalinin V. L., Faddeev L. D., “A nonarithmetic derivation of the Selberg trace formula”, J. Soviet Math., 8 (1977), 177–199
[25] Voros A., “Spectral functions, special functions and the Selberg zeta function”, Comm. Math. Phys., 110 (1987), 439–465 | DOI