Resolvent Trace Formula and Determinants of $n$ Laplacians on Orbifold Riemann Surfaces
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For $n$ a nonnegative integer, we consider the $n$-Laplacian $\Delta_n$ acting on the space of $n$-differentials on a confinite Riemann surface $X$ which has ramification points. The trace formula for the resolvent kernel is developed along the line à la Selberg. Using the trace formula, we compute the regularized determinant of $\Delta_n+s(s+2n-1)$, from which we deduce the regularized determinant of $\Delta_n$, denoted by $\det\!'\Delta_n$. Taking into account the contribution from the absolutely continuous spectrum, $\det\!'\Delta_n$ is equal to a constant $\mathcal{C}_n$ times $Z(n)$ when $n\geq 2$. Here $Z(s)$ is the Selberg zeta function of $X$. When $n=0$ or $n=1$, $Z(n)$ is replaced by the leading coefficient of the Taylor expansion of $Z(s)$ around $s=0$ and $s=1$ respectively. The constants $\mathcal{C}_n$ are calculated explicitly. They depend on the genus, the number of cusps, as well as the ramification indices, but is independent of the moduli parameters.
Keywords: determinant of Laplacian, $n$-differentials, cocompact Riemann surfaces, Selberg trace formula.
@article{SIGMA_2021_17_a82,
     author = {Lee-Peng Teo},
     title = {Resolvent {Trace} {Formula} and {Determinants} of $n$ {Laplacians} on {Orbifold} {Riemann} {Surfaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a82/}
}
TY  - JOUR
AU  - Lee-Peng Teo
TI  - Resolvent Trace Formula and Determinants of $n$ Laplacians on Orbifold Riemann Surfaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a82/
LA  - en
ID  - SIGMA_2021_17_a82
ER  - 
%0 Journal Article
%A Lee-Peng Teo
%T Resolvent Trace Formula and Determinants of $n$ Laplacians on Orbifold Riemann Surfaces
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a82/
%G en
%F SIGMA_2021_17_a82
Lee-Peng Teo. Resolvent Trace Formula and Determinants of $n$ Laplacians on Orbifold Riemann Surfaces. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a82/

[1] Alekseevskii V. P., “On functions similar to the gamma function”, Comm. Proc. Kharkov Math. Soc., 1 (1889), 169–238

[2] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI

[3] Barnes E. W., “The theory of the $G$-function”, Q. J. Math., 31 (1900), 264–314

[4] D'Hoker E., Phong D. H., “On determinants of Laplacians on Riemann surfaces”, Comm. Math. Phys., 104 (1986), 537–545 | DOI

[5] Efrat I., “Determinants of Laplacians on surfaces of finite volume”, Comm. Math. Phys., 119 (1988), 443–451 | DOI

[6] Fay J. D., “Fourier coefficients of the resolvent for a Fuchsian group”, J. Reine Angew. Math., 293–294 (1977), 143–203 | DOI

[7] Fischer J., An approach to the Selberg trace formula via the Selberg zeta-function, Lecture Notes in Math., 1253, Springer-Verlag, Berlin, 1987 | DOI

[8] Freixas i Montplet G., von Pippich A.-M., “Riemann–Roch isometries in the non-compact orbifold setting”, J. Eur. Math. Soc. (JEMS), 22 (2020), 3491–3564, arXiv: 1604.00284 | DOI

[9] Gong D. G., “Zeta-determinant and torsion functions on Riemann surfaces of finite volume”, Manuscripta Math., 86 (1995), 435–454 | DOI

[10] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 6th ed., Academic Press Inc., San Diego, CA, 2000

[11] Hejhal D. A., The Selberg trace formula for ${\rm PSL}(2,\mathbb R)$, v. 1, Lecture Notes in Math., 548, Springer-Verlag, Berlin, 1976 | DOI

[12] Hejhal D. A., The Selberg trace formula for ${\rm PSL}(2, \mathbb R)$, v. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983 | DOI

[13] Iwaniec H., Spectral methods of automorphic forms, Graduate Studies in Mathematics, 53, 2nd ed., Amer. Math. Soc., Providence, RI, 2002 | DOI

[14] Koyama S., “Determinant expression of Selberg zeta functions. I”, Trans. Amer. Math. Soc., 324 (1991), 149–168 | DOI

[15] Koyama S., “Determinant expression of Selberg zeta functions. III”, Proc. Amer. Math. Soc., 113 (1991), 303–311 | DOI

[16] McIntyre A., Takhtajan L. A., “Holomorphic factorization of determinants of Laplacians on Riemann surfaces and a higher genus generalization of Kronecker's first limit formula”, Geom. Funct. Anal., 16 (2006), 1291–1323, arXiv: math.CV/0410294 | DOI

[17] Sarnak P., “Determinants of Laplacians”, Comm. Math. Phys., 110 (1987), 113–120 | DOI

[18] Selberg A., “Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series”, J. Indian Math. Soc. (N.S.), 20 (1956), 47–87

[19] Selberg A., “Göttingen lectures on harmonic analysis”, Alte Selberg Collected Papers, Springer Collected Works in Mathematics, Springer-Verlag, Berlin, 1989, 626–675

[20] Takhtajan L. A., Zograf P. G., “A local index theorem for families of $\overline\partial$-operators on punctured Riemann surfaces and a new Kähler metric on their moduli spaces”, Comm. Math. Phys., 137 (1991), 399–426 | DOI

[21] Takhtajan L. A., Zograf P. G., “Local index theorem for orbifold Riemann surfaces”, Lett. Math. Phys., 109 (2019), 1119–1143, arXiv: 1701.00771 | DOI

[22] Teo L.-P., “Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points”, Lett. Math. Phys., 110 (2020), 61–82, arXiv: 1901.07898 | DOI

[23] Venkov A. B., “Spectral theory of automorphic functions”, Proc. Steklov Inst. Math., 153 (1982), 1–163

[24] Venkov A. B., Kalinin V. L., Faddeev L. D., “A nonarithmetic derivation of the Selberg trace formula”, J. Soviet Math., 8 (1977), 177–199

[25] Voros A., “Spectral functions, special functions and the Selberg zeta function”, Comm. Math. Phys., 110 (1987), 439–465 | DOI