Mots-clés : isomonodromic deformations, $(TE)$-structures.
@article{SIGMA_2021_17_a81,
author = {Claus Hertling},
title = {Rank 2 {Bundles} with {Meromorphic} {Connections} with {Poles} of {Poincar\'e} {Rank~}$1$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a81/}
}
Claus Hertling. Rank 2 Bundles with Meromorphic Connections with Poles of Poincaré Rank $1$. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a81/
[1] Anosov D. V., Bolibruch A. A., The Riemann–Hilbert problem, Aspects of Mathematics, 22, Friedr. Vieweg Sohn, Braunschweig, 1994 | DOI
[2] Babbitt D. G., Varadarajan V. S., “Formal reduction theory of meromorphic differential equations: a group theoretic view”, Pacific J. Math., 109 (1983), 1–80 | DOI
[3] Cotti G., Dubrovin B., Guzzetti D., “Isomonodromy deformations at an irregular singularity with coalescing eigenvalues”, Duke Math. J., 168 (2019), 967–1108, arXiv: 1706.04808 | DOI
[4] David L., Hertling C., “Regular $F$-manifolds: initial conditions and Frobenius metrics”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 17 (2017), 1121–1152, arXiv: 1411.4553 | DOI
[5] David L., Hertling C., “$(T)$-structures over two-dimensional $F$-manifolds: formal classification”, Ann. Mat. Pura Appl. (4), 199 (2020), 1221–1242, arXiv: 1811.03406 | DOI
[6] David L., Hertling C., “$(TE)$-structures over the irreducible 2-dimensional globally nilpotent $F$-manifold germ”, Rev. Roumaine Math. Pures Appl., 65 (2020), 235–284, arXiv: 2001.01063
[7] David L., Hertling C., “Meromorphic connections over F-manifolds”, Integrability, Quantization, and Geometry, v. I, Proceedings of Symposia in Pure Mathematics, 103, Integrable systems, eds. S. Novikov, I. Krichever, O. Ogievetsky, S. Shlosman, Amer. Math. Soc., Providence, RI, 2021, 171–216, arXiv: 1912.03331
[8] Fabry E., Sur les intégrales des équations différentielles lineaires à coefficients rationels, Ph.D. Thesis, Paris, 1885
[9] Hertling C., Frobenius manifolds and moduli spaces for singularities, Cambridge Tracts in Mathematics, 151, Cambridge University Press, Cambridge, 2002 | DOI
[10] Hertling C., “$tt^*$ geometry, Frobenius manifolds, their connections, and the construction for singularities”, J. Reine Angew. Math., 555 (2003), 77–161, arXiv: math.AG/0203054 | DOI
[11] Hertling C., Hoevenaars L., Posthuma H., “Frobenius manifolds, projective special geometry and Hitchin systems”, J. Reine Angew. Math., 649 (2010), 117–165, arXiv: 0905.3304 | DOI
[12] Hertling C., Manin Yu., “Weak Frobenius manifolds”, Int. Math. Res. Not., 1999 (1999), 277–286, arXiv: math.QA/9810132 | DOI
[13] Hertling C., Manin Yu., “Unfoldings of meromorphic connections and a construction of Frobenius manifolds”, Frobenius Manifolds, Aspects Math., 36, Friedr. Vieweg, Wiesbaden, 2004, 113–144, arXiv: math.AG/0207089 | DOI
[14] Hertling C., Sabbah C., “Examples of non-commutative Hodge structures”, J. Inst. Math. Jussieu, 10 (2011), 635–674, arXiv: 0912.2754 | DOI
[15] Hertling C., Sevenheck C., “Limits of families of Brieskorn lattices and compactified classifying spaces”, Adv. Math., 223 (2010), 1155–1224, arXiv: 0805.4777 | DOI
[16] Malgrange B., “La classification des connexions irrégulières à une variable”, Mathematics and Physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 381–399
[17] Malgrange B., “Sur les déformations isomonodromiques. I II Singularités irrégulières”, Mathematics and physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser Boston, Boston, MA, 1983, 401–438
[18] Malgrange B., “Deformations of differential systems. II”, J. Ramanujan Math. Soc., 1 (1986), 3–15
[19] Sabbah C., “Introduction to algebraic theory of linear systems of differential equations”, Éléments de la théorie des systèmes différentiels. $\mathcal D$-modules cohérents et holonomes (Nice, 1990), Travaux en Cours, 45, Hermann, Paris, 1993, 1–80
[20] Sabbah C., Polarizable twistor $\mathcal D$-modules, Astérisque, 300, 2005, vi+208 pp., arXiv: math.AG/0503038
[21] Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer, London, 2008 | DOI
[22] Sabbah C., “Integrable deformations and degenerations of some irregular singularities”, Publ. Res. Inst. Math. Sci. (to appear) , arXiv: 1711.08514
[23] Saito M., Deformations of abstract Brieskorn lattices, arXiv: 1707.07480
[24] Varadarajan V. S., “Linear meromorphic differential equations: a modern point of view”, Bull. Amer. Math. Soc. (N.S.), 33 (1996), 1–42 | DOI