Quantization of Calogero–Painlevé System and Multi-Particle Quantum Painlevé Equations II–VI
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the isomonodromic formulation of the Calogero–Painlevé multi-particle systems and proceed to their canonical quantization. We then proceed to the quantum Hamiltonian reduction on a special representation to radial variables, in analogy with the classical case and also with the theory of quantum Calogero equations. This quantized version is compared to the generalization of a result of Nagoya on integral representations of certain solutions of the quantum Painlevé equations. We also provide multi-particle generalizations of these integral representations.
Keywords: Harish-Chandra isomorphism.
Mots-clés : quantization of Painlevé, Calogero–Painlevé
@article{SIGMA_2021_17_a80,
     author = {Fatane Mobasheramini and Marco Bertola},
     title = {Quantization of {Calogero{\textendash}Painlev\'e} {System} and {Multi-Particle} {Quantum} {Painlev\'e} {Equations} {II{\textendash}VI}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a80/}
}
TY  - JOUR
AU  - Fatane Mobasheramini
AU  - Marco Bertola
TI  - Quantization of Calogero–Painlevé System and Multi-Particle Quantum Painlevé Equations II–VI
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a80/
LA  - en
ID  - SIGMA_2021_17_a80
ER  - 
%0 Journal Article
%A Fatane Mobasheramini
%A Marco Bertola
%T Quantization of Calogero–Painlevé System and Multi-Particle Quantum Painlevé Equations II–VI
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a80/
%G en
%F SIGMA_2021_17_a80
Fatane Mobasheramini; Marco Bertola. Quantization of Calogero–Painlevé System and Multi-Particle Quantum Painlevé Equations II–VI. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a80/

[1] Bergère M., Eynard B., Marchal O., Prats-Ferrer A., “Loop equations and topological recursion for the arbitrary-$\beta$ two-matrix model”, J. High Energy Phys., 2012:3 (2012), 098, 78 pp., arXiv: 1106.0332 | DOI

[2] Bertola M., Cafasso M., Rubtsov V., “Noncommutative Painlevé equations and systems of Calogero type”, Comm. Math. Phys., 363 (2018), 503–530, arXiv: 1710.00736 | DOI

[3] Borot G., Eynard B., Majumdar S. N., Nadal C., “Large deviations of the maximal eigenvalue of random matrices”, J. Stat. Mech. Theory Exp., 2011 (2011), P11024, 56 pp., arXiv: 1009.1945 | DOI

[4] Brezin E., Kazakov V., “Exactly solvable field theories of closed strings”, The Large $N$ Expansion in Quantum Field Theory and Statistical Physics: from Spin Systems to 2-Dimensional Gravity, eds. R. Brezin, S.R. Wadia, World Scientific, Singapore, 1993, 711–717 | DOI

[5] Douglas M. R., Shenker S. H., “Strings in less than one dimension”, Nuclear Phys. B, 335 (1990), 635–654 | DOI

[6] Dubrovin B., “Geometry of $2${D} topological field theories”, Integrable Systems and Quantum Groups, Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI

[7] Dubrovin B., Mazzocco M., “Canonical structure and symmetries of the Schlesinger equations”, Comm. Math. Phys., 271 (2007), 289–373, arXiv: math.DG/0311261 | DOI

[8] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism”, Invent. Math., 147 (2002), 243–348, arXiv: math.AG/0011114 | DOI

[9] Eynard B., Garcia-Failde E., From topological recursion to wave functions and PDEs quantizing hyperelliptic curves, arXiv: 1911.07795

[10] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations. I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI

[11] Forrester P. J., Witte N. S., “Random matrix theory and the sixth Painlevé equation”, J. Phys. A: Math. Gen., 39 (2006), 12211–12233 | DOI

[12] Fuchs R., Sur quelques équations différentielles linéaires du second ordre, Gauthier-Villars, Paris, 1905

[13] Gambier B., “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes”, Acta Math., 33 (1910), 1–55 | DOI

[14] Gross D. J., Migdal A. A., “Nonperturbative two-dimensional quantum gravity”, Phys. Rev. Lett., 64 (1990), 127–130 | DOI

[15] Inozemtsev V. I., “Lax representation with spectral parameter on a torus for integrable particle systems”, Lett. Math. Phys., 17 (1989), 11–17 | DOI

[16] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI

[17] Jimbo M., Nagoya H., Sun J., “Remarks on the confluent KZ equation for $\mathfrak{sl}_2$ and quantum Painlevé equations”, J. Phys. A: Math. Theor., 41 (2008), 175205, 14 pp. | DOI

[18] Kazhdan D., Kostant B., Sternberg S., “Hamiltonian group actions and dynamical systems of Calogero type”, Comm. Pure Appl. Math., 31 (1978), 481–507 | DOI

[19] Lee S.-Y., Teodorescu R., Wiegmann P., “Viscous shocks in Hele–Shaw flow and Stokes phenomena of the Painlevé I transcendent”, Phys. D, 240 (2011), 1080–1091, arXiv: 1005.0369 | DOI

[20] Malmquist J., Sur les équations différentielles du second ordre, dont l'intégrale générale a ses points critiques fixes, Almqvist Wiksells, 1922

[21] Mehta M. L., Random matrices, Pure and Applied Mathematics (Amsterdam), 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004

[22] Nagoya H., “Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations”, J. Math. Phys., 52 (2011), 083509, 16 pp., arXiv: 1109.1645 | DOI

[23] Okamoto K., “Studies on the Painlevé equations. I Sixth Painlevé equation $P_{{\rm VI}}$”, Ann. Mat. Pura Appl. (4), 146 (1987), 337–381 | DOI

[24] Painlevé P., “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France, 28 (1900), 201–261 | DOI

[25] Takasaki K., “Painlevé–Calogero correspondence revisited”, J. Math. Phys., 42 (2001), 1443–1473, arXiv: math.QA/0004118 | DOI

[26] Tracy C. A., Widom H., “Fredholm determinants, differential equations and matrix models”, Comm. Math. Phys., 163 (1994), 33–72, arXiv: hep-th/9306042 | DOI

[27] Zabrodin A., Zotov A., “Quantum Painlevé–Calogero correspondence”, J. Math. Phys., 53 (2012), 073507, 19 pp., arXiv: 1107.5672 | DOI