Mots-clés : $q$-binomial theorem.
@article{SIGMA_2021_17_a8,
author = {Paul Terwilliger},
title = {Double {Lowering} {Operators} on {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a8/}
}
Paul Terwilliger. Double Lowering Operators on Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a8/
[1] Alnajjar H., “Leonard pairs associated with the equitable generators of the quantum algebra $U_q(\mathfrak{sl}_2)$”, Linear Multilinear Algebra, 59 (2011), 1127–1142 | DOI | MR | Zbl
[2] Alnajjar H., Curtin B., “A family of tridiagonal pairs related to the quantum affine algebra $U_q(\widehat{\mathfrak{sl}_2})$”, Electron. J. Linear Algebra, 13 (2005), 1–9 | DOI | MR | Zbl
[3] Askey R., Wilson J., “A set of orthogonal polynomials that generalize the Racah coefficients or $6-j$ symbols”, SIAM J. Math. Anal., 10 (1979), 1008–1016 | DOI | MR | Zbl
[4] Bannai E., Ito T., Algebraic combinatorics. I Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | MR | Zbl
[5] Baseilhac P., “An integrable structure related with tridiagonal algebras”, Nuclear Phys. B, 705 (2005), 605–619, arXiv: math-ph/0408025 | DOI | MR | Zbl
[6] Baseilhac P., “The $q$-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach”, Nuclear Phys. B, 754 (2006), 309–328, arXiv: math-ph/0604036 | DOI | MR | Zbl
[7] Bockting-Conrad S., “Two commuting operators associated with a tridiagonal pair”, Linear Algebra Appl., 437 (2012), 242–270, arXiv: 1110.3434 | DOI | MR | Zbl
[8] Bockting-Conrad S., “Tridiagonal pairs of $q$-Racah type, the double lowering operator $\psi$, and the quantum algebra $U_q(\mathfrak{sl}_2)$”, Linear Algebra Appl., 445 (2014), 256–279, arXiv: 1307.7410 | DOI | MR | Zbl
[9] Bockting-Conrad S., Some $q$-exponential formulas involving the double lowering operator $\psi$ for a tridiagonal pair, arXiv: 1907.01157 | MR
[10] Bockting-Conrad S., Terwilliger P., “The algebra $U_q(\mathfrak{sl}_2)$ in disguise”, Linear Algebra Appl., 459 (2014), 548–585, arXiv: 1307.7572 | DOI | MR | Zbl
[11] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[12] Date E., Roan S., “The structure of quotients of the Onsager algebra by closed ideals”, J. Phys. A: Math. Gen., 33 (2000), 3275–3296, arXiv: math.QA/9911018 | DOI | MR | Zbl
[13] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[14] Granovskii Ya.I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR
[15] Hartwig B., “The tetrahedron algebra and its finite-dimensional irreducible modules”, Linear Algebra Appl., 422 (2007), 219–235, arXiv: math.RT/0606197 | DOI | MR | Zbl
[16] Hartwig B., Terwilliger P., “The tetrahedron algebra, the Onsager algebra, and the $\mathfrak{sl}_2$ loop algebra”, J. Algebra, 308 (2007), 840–863, arXiv: math-ph/0511004 | DOI | MR | Zbl
[17] Ito T., Tanabe K., Terwilliger P., “Some algebra related to $P$- and $Q$-polynomial association schemes”, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001, 167–192, arXiv: math.CO/0406556 | DOI | MR | Zbl
[18] Ito T., Terwilliger P., “Tridiagonal pairs and the quantum affine algebra $U_q(\widehat{\mathfrak{sl}}_2)$”, Ramanujan J., 13 (2007), 39–62, arXiv: math.QA/0310042 | DOI | MR | Zbl
[19] Ito T., Terwilliger P., “Tridiagonal pairs of Krawtchouk type”, Linear Algebra Appl., 427 (2007), 218–233, arXiv: 0706.1065 | DOI | MR | Zbl
[20] Ito T., Terwilliger P., “Two non-nilpotent linear transformations that satisfy the cubic $q$-Serre relations”, J. Algebra Appl., 6 (2007), 477–503, arXiv: math.QA/0508398 | DOI | MR | Zbl
[21] Ito T., Terwilliger P., “Finite-dimensional irreducible modules for the three-point $\mathfrak{sl}_2$ loop algebra”, Comm. Algebra, 36 (2008), 4557–4598, arXiv: 0707.2313 | DOI | MR | Zbl
[22] Ito T., Terwilliger P., “Tridiagonal pairs of $q$-Racah type”, J. Algebra, 322 (2009), 68–93, arXiv: 0807.0271 | DOI | MR | Zbl
[23] Ito T., Terwilliger P., “The augmented tridiagonal algebra”, Kyushu J. Math., 64 (2010), 81–144, arXiv: 0904.2889 | DOI | MR | Zbl
[24] Ito T., Terwilliger P., Weng C., “The quantum algebra $U_q(\mathfrak{sl}_2)$ and its equitable presentation”, J. Algebra, 298 (2006), 284–301, arXiv: math.QA/0507477 | DOI | MR | Zbl
[25] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[26] Miki K., “Finite dimensional modules for the $q$-tetrahedron algebra”, Osaka J. Math., 47 (2010), 559–589 | MR | Zbl
[27] Nomura K., Terwilliger P., “Krawtchouk polynomials, the Lie algebra $\mathfrak{sl}_2$, and Leonard pairs”, Linear Algebra Appl., 437 (2012), 345–375, arXiv: 1201.1645 | DOI | MR | Zbl
[28] Nomura K., Terwilliger P., Totally bipartite tridiagonal pairs, arXiv: 1711.00332
[29] Terwilliger P., “The subconstituent algebra of an association scheme. I”, J. Algebraic Combin., 1 (1992), 363–388 | DOI | MR | Zbl
[30] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR | Zbl
[31] Terwilliger P., “Two relations that generalize the $q$-Serre relations and the Dolan–Grady relations”, Physics and Combinatorics (1999, Nagoya), World Sci. Publ., River Edge, NJ, 2001, 377–398, arXiv: math.QA/0307016 | DOI | MR | Zbl
[32] Terwilliger P., “Leonard pairs and the $q$-Racah polynomials”, Linear Algebra Appl., 387 (2004), 235–276, arXiv: math.QA/0306301 | DOI | MR | Zbl
[33] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array”, Des. Codes Cryptogr., 34 (2005), 307–332, arXiv: math.RA/0306291 | DOI | MR | Zbl
[34] Terwilliger P., “An algebraic approach to the Askey scheme of orthogonal polynomials”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 255–330, arXiv: math.QA/0408390 | DOI | MR | Zbl
[35] Terwilliger P., “The universal Askey–Wilson algebra”, SIGMA, 7 (2011), 069, 24 pp., arXiv: 1104.2813 | DOI | MR | Zbl
[36] Terwilliger P., “The universal Askey–Wilson algebra and the equitable presentation of $U_q(\mathfrak{sl}_2)$”, SIGMA, 7 (2011), 099, 26 pp., arXiv: 1107.3544 | DOI | MR | Zbl
[37] Terwilliger P., “The $q$-Onsager algebra and the positive part of $U_q(\widehat{\mathfrak{sl}}_2)$”, Linear Algebra Appl., 521 (2017), 19–56, arXiv: 1506.08666 | DOI | MR | Zbl
[38] Terwilliger P., “The $q$-Onsager algebra and the universal Askey–Wilson algebra”, SIGMA, 14 (2018), 044, 18 pp., arXiv: 1801.06083 | DOI | MR | Zbl
[39] Terwilliger P., “Tridiagonal pairs of $q$-Racah type, the Bockting operator $\psi$, and $L$-operators for $U_q(L(\mathfrak{sl}_2))$”, Ars Math. Contemp., 14 (2018), 55–65, arXiv: 1608.07613 | DOI | MR | Zbl
[40] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl
[41] Vidunas R., “Simultaneously lowering operators”, RIMS Kōkyūroku, 1593 (2008), 78–86
[42] Zhedanov A. S., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl