An Expansion Formula for Decorated Super-Teichmüller Spaces
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Motivated by the definition of super-Teichmüller spaces, and Penner–Zeitlin's recent extension of this definition to decorated super-Teichmüller space, as examples of super Riemann surfaces, we use the super Ptolemy relations to obtain formulas for super $\lambda$-lengths associated to arcs in a bordered surface. In the special case of a disk, we are able to give combinatorial expansion formulas for the super $\lambda$-lengths associated to diagonals of a polygon in the spirit of Ralf Schiffler's $T$-path formulas for type $A$ cluster algebras. We further connect our formulas to the super-friezes of Morier-Genoud, Ovsienko, and Tabachnikov, and obtain partial progress towards defining super cluster algebras of type $A_n$. In particular, following Penner–Zeitlin, we are able to get formulas (up to signs) for the $\mu$-invariants associated to triangles in a triangulated polygon, and explain how these provide a step towards understanding odd variables of a super cluster algebra.
Keywords: cluster algebras, decorated Teichmüller spaces, supersymmetry.
Mots-clés : Laurent polynomials
@article{SIGMA_2021_17_a79,
     author = {Gregg Musiker and Nicholas Ovenhouse and Sylvester W. Zhang},
     title = {An {Expansion} {Formula} for {Decorated} {Super-Teichm\"uller} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a79/}
}
TY  - JOUR
AU  - Gregg Musiker
AU  - Nicholas Ovenhouse
AU  - Sylvester W. Zhang
TI  - An Expansion Formula for Decorated Super-Teichmüller Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a79/
LA  - en
ID  - SIGMA_2021_17_a79
ER  - 
%0 Journal Article
%A Gregg Musiker
%A Nicholas Ovenhouse
%A Sylvester W. Zhang
%T An Expansion Formula for Decorated Super-Teichmüller Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a79/
%G en
%F SIGMA_2021_17_a79
Gregg Musiker; Nicholas Ovenhouse; Sylvester W. Zhang. An Expansion Formula for Decorated Super-Teichmüller Spaces. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a79/

[1] Berenstein A., Retakh V., “Noncommutative marked surfaces”, Adv. Math., 328 (2018), 1010–1087, arXiv: 1510.02628 | DOI

[2] Berenstein A., Zelevinsky A., “Quantum cluster algebras”, Adv. Math., 195 (2005), 405–455, arXiv: math.QA/0404446 | DOI

[3] Cimasoni D., Reshetikhin N., “Dimers on surface graphs and spin structures. I”, Comm. Math. Phys., 275 (2007), 187–208, arXiv: math-ph/0608070 | DOI

[4] Cimasoni D., Reshetikhin N., “Dimers on surface graphs and spin structures. II”, Comm. Math. Phys., 281 (2008), 445–468, arXiv: 0704.0273 | DOI

[5] Crane L., Rabin J. M., “Super Riemann surfaces: uniformization and Teichmüller theory”, Comm. Math. Phys., 113 (1988), 601–623 | DOI

[6] Fock V., Goncharov A., “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Études Sci., 2006, 1–211, arXiv: math.AG/0311149 | DOI

[7] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. I Cluster complexes”, Acta Math., 201 (2008), 83–146 | DOI

[8] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI

[9] Gekhtman M., Shapiro M., Vainshtein A., “Cluster algebras and Weil–Petersson forms”, Duke Math. J., 127 (2005), 291–311, arXiv: math.QA/0309138 | DOI

[10] Huang Y., Penner R. C., Zeitlin A. M., Super McShane identity, arXiv: 1907.09978

[11] Ip I.C.H., Penner R. C., Zeitlin A. M., “$\mathcal{N}=2$ super-Teichmüller theory”, Adv. Math., 336 (2018), 409–454, arXiv: 1605.08094 | DOI

[12] Li L., Mixco J., Ransingh B., Srivastava A. K., “An introduction to supersymmetric cluster algebras”, Electron. J. Combin., 28 (2021), 1.30, 29 pp., arXiv: 1708.03851 | DOI

[13] Morier-Genoud S., Ovsienko V., Tabachnikov S., “Introducing supersymmetric frieze patterns and linear difference operators (with an appendix by Alexey Ustinov)”, Math. Z., 281 (2015), 1061–1087, arXiv: 1501.07476 | DOI

[14] Musiker G., Schiffler R., Williams L., “Positivity for cluster algebras from surfaces”, Adv. Math., 227 (2011), 2241–2308, arXiv: 0906.0748 | DOI

[15] Ovsienko V., A step towards cluster superalgebras, arXiv: 1503.01894

[16] Ovsienko V., Shapiro M., “Cluster algebras with Grassmann variables”, Electron. Res. Announc. Math. Sci., 26 (2019), 1–15, arXiv: 1809.01860 | DOI

[17] Ovsienko V., Tabachnikov S., “Dual numbers, weighted quivers, and extended Somos and Gale–Robinson sequences”, Algebr. Represent. Theory, 21 (2018), 1119–1132, arXiv: 1705.01623 | DOI

[18] Penner R. C., Decorated Teichmüller theory, QGM Master Class Series, European Mathematical Society (EMS), Zürich, 2012 | DOI

[19] Penner R. C., Zeitlin A. M., “Decorated super-Teichmüller space”, J. Differential Geom., 111 (2019), 527–566, arXiv: 1509.06302 | DOI

[20] Schiffler R., “A cluster expansion formula ($A_n$ case)”, Electron. J. Combin., 15 (2008), 64, 9 pp., arXiv: math.RT/0611956 | DOI

[21] Shemyakova E., Voronov T., On super Plücker embedding and cluster algebras 1906.12011

[22] Yurikusa T., “Cluster expansion formulas in type $A$”, Algebr. Represent. Theory, 22 (2019), 1–19, arXiv: 1605.07557 | DOI