Triality for Homogeneous Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Through the triality of ${\rm SO}(8,\mathbb{C})$, we study three interrelated homogeneous basis of the ring of invariant polynomials of Lie algebras, which give the basis of three Hitchin fibrations, and identify the explicit automorphisms that relate them.
Keywords: triality, Higgs bundles
Mots-clés : invariant polynomials.
@article{SIGMA_2021_17_a78,
     author = {Laura P. Schaposnik and Sebastian Schulz},
     title = {Triality for {Homogeneous} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a78/}
}
TY  - JOUR
AU  - Laura P. Schaposnik
AU  - Sebastian Schulz
TI  - Triality for Homogeneous Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a78/
LA  - en
ID  - SIGMA_2021_17_a78
ER  - 
%0 Journal Article
%A Laura P. Schaposnik
%A Sebastian Schulz
%T Triality for Homogeneous Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a78/
%G en
%F SIGMA_2021_17_a78
Laura P. Schaposnik; Sebastian Schulz. Triality for Homogeneous Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a78/

[1] Aganagic M., Haouzi N., Shakirov S., $A_n$-triality, arXiv: 1403.3657

[2] Antón Sancho Á., Fibrados de Higgs y trialidad, Ph.D. Thesis, Universidad Complutense de Madrid, 2009

[3] Baraglia D., Schaposnik L. P., “Real structures on moduli spaces of Higgs bundles”, Adv. Theor. Math. Phys., 20 (2016), 525–551, arXiv: 1309.1195 | DOI

[4] Beck F., Donagi R., Wendland K., “Folding of Hitchin systems and crepant resolutions”, Int. Math. Res. Not. (to appear) , arXiv: 2004.04245 | DOI

[5] Corlette K., “Flat $G$-bundles with canonical metrics”, J. Differential Geom., 28 (1988), 361–382 | DOI

[6] Donagi R., Pantev T., “Langlands duality for Hitchin systems”, Invent. Math., 189 (2012), 653–735, arXiv: math.AG/0604617 | DOI

[7] Donaldson S. K., “Twisted harmonic maps and the self-duality equations”, Proc. London Math. Soc., 55 (1987), 127–131 | DOI

[8] Fuchs J., Schellekens B., Schweigert C., “From Dynkin diagram symmetries to fixed point structures”, Comm. Math. Phys., 180 (1996), 39–97, arXiv: hep-th/9506135 | DOI

[9] García-Prada O., Ramanan S., “Involutions and higher order automorphisms of Higgs bundle moduli spaces”, Proc. Lond. Math. Soc., 119 (2019), 681–732, arXiv: 1605.05143 | DOI

[10] Hausel T., Thaddeus M., “Mirror symmetry, Langlands duality, and the Hitchin system”, Invent. Math., 153 (2003), 197–229, arXiv: math.AG/0205236 | DOI

[11] Heller S., Schaposnik L. P., “Branes through finite group actions”, J. Geom. Phys., 129 (2018), 279–293, arXiv: 1611.00391 | DOI

[12] Hitchin N. J., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI

[13] Hitchin N. J., “Stable bundles and integrable systems”, Duke Math. J., 54 (1987), 91–114 | DOI

[14] Hitchin N. J., “Langlands duality and $G_2$ spectral curves”, Q. J. Math., 58 (2007), 319–344, arXiv: math.AG/0611524 | DOI

[15] Kapustin A., Witten E., “Electric-magnetic duality and the geometric Langlands program”, Commun. Number Theory Phys., 1 (2007), 1–236, arXiv: hep-th/0604151 | DOI

[16] Lawson Jr. H.B., Michelsohn M. L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989

[17] Ngô B.C., “Le lemme fondamental pour les algèbres de Lie”, Publ. Math. Inst. Hautes Études Sci., 111 (2010), 1–169, arXiv: 0801.0446 | DOI

[18] Schaposnik L. P., Spectral data for $G$-Higgs bundles, Ph.D. Thesis, University of Oxford, 2013, arXiv: 1301.1981

[19] Schaposnik L. P., “Higgs bundles – recent applications”, Notices Amer. Math. Soc., 67 (2020), 625–634, arXiv: 1909.10543 | DOI

[20] Simpson C. T., “Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization”, J. Amer. Math. Soc., 1 (1988), 867–918 | DOI

[21] Slodowy P., Simple singularities and simple algebraic groups, Lecture Notes in Math., 815, Springer, Berlin, 1980 | DOI

[22] Springer T. A., Linear algebraic groups, Modern Birkhäuser Classics, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2009 | DOI

[23] Uhlenbeck K., Yau S.-T., “On the existence of Hermitian–Yang–Mills connections in stable vector bundles”, Comm. Pure Appl. Math., 39 (1986), S257–S293 | DOI

[24] Wolf J. A., Gray A., “Homogeneous spaces defined by Lie group automorphisms I”, J. Differential Geometry, 2 (1968), 77–114 | DOI

[25] Yokota I., Exceptional Lie groups, arXiv: 0902.0431