@article{SIGMA_2021_17_a77,
author = {Freddy Cachazo and Nick Early},
title = {Minimal {Kinematics:} {An} {All} $k$ and $n$ {Peek} into $\mathrm{Trop}^+\mathrm{G}(k,n)$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a77/}
}
TY - JOUR
AU - Freddy Cachazo
AU - Nick Early
TI - Minimal Kinematics: An All $k$ and $n$ Peek into $\mathrm{Trop}^+\mathrm{G}(k,n)$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2021
VL - 17
UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a77/
LA - en
ID - SIGMA_2021_17_a77
ER -
Freddy Cachazo; Nick Early. Minimal Kinematics: An All $k$ and $n$ Peek into $\mathrm{Trop}^+\mathrm{G}(k,n)$. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a77/
[1] Arkani-Hamed N., He S., Lam T., “Stringy canonical forms”, J. High Energy Phys., 2021:2 (2021), 069, 62 pp., arXiv: 1912.08707 | DOI
[2] Arkani-Hamed N., He S., Lam T., Thomas H., Binary geometries, generalized particles and strings, and cluster algebras, arXiv: 1912.11764
[3] Arkani-Hamed N., Lam T., Spradlin M., “Non-perturbative geometries for planar ${\mathcal N} = 4$ sym amplitudes”, J. High Energy Phys., 2021:3 (2021), 065, 14 pp., arXiv: 1912.08222 | DOI
[4] Arkani-Hamed N., Lam T., Spradlin M., “Positive configuration space”, Comm. Math. Phys., 384 (2021), 909–954, arXiv: 2003.03904 | DOI
[5] Borges F., Cachazo F., “Generalized planar Feynman diagrams: collections”, J. High Energy Phys., 2020:11 (2020), 164, 27 pp., arXiv: 1910.10674 | DOI
[6] Braun L., “Hilbert series of the Grassmannian and $k$-Narayana numbers”, Commun. Math., 27 (2019), 27–41 | DOI
[7] Cachazo F., Early N., Guevara A., Mizera S., “Scattering equations: from projective spaces to tropical Grassmannians”, J. High Energy Phys., 2019:6 (2019), 039, 32 pp., arXiv: 1903.08904 | DOI
[8] Cachazo F., Guevara A., Umbert B., Zhang Y., Planar matrices and arrays of Feynman diagrams, arXiv: 1912.09422
[9] Cachazo F., He S., Yuan E. Y., Scattering equations and Kawai–Lewellen–Tye orthogonality, Phys. Rev. D, 90, 2014, 12 pp., arXiv: 1306.6575 | DOI
[10] Cachazo F., He S., Yuan E. Y., “Scattering of massless particles in arbitrary dimensions”, Phys. Rev. Lett., 113 (2014), 171601, 4 pp., arXiv: 1307.2199 | DOI
[11] Cachazo F., He S., Yuan E. Y., “Scattering of massless particles: scalars, gluons and gravitons”, J. High Energy Phys., 2014:7 (2014), 033, 33 pp., arXiv: 1309.0885 | DOI
[12] Cachazo F., Mason L., Skinner D., “Gravity in twistor space and its Grassmannian formulation”, SIGMA, 10 (2014), 051, 28 pp., arXiv: 1207.4712 | DOI
[13] Cachazo F., Rojas J. M., “Notes on biadjoint amplitudes, ${\rm Trop\, G}(3,7)$ and ${\rm X}(3,7)$ scattering equations”, J. High Energy Phys., 2020:4 (2020), 176, 13 pp., arXiv: 1906.05979 | DOI
[14] Cachazo F., Umbert B., Zhang Y., “Singular solutions in soft limits”, J. High Energy Phys., 2020:5 (2020), 148, 32 pp., arXiv: 1911.02594 | DOI
[15] Dolan L., Goddard P., “Proof of the formula of Cachazo, He and Yuan for Yang–Mills tree amplitudes in arbitrary dimension”, J. High Energy Phys., 2014:5 (2014), 010, 24 pp., arXiv: 1311.5200 | DOI
[16] Drummond J., Foster J., Gürdoğan O., Kalousios C., Tropical fans, scattering equations and amplitudes, arXiv: 2002.04624
[17] Drummond J., Foster J., Gürdoğan O., Kalousios C., “Tropical Grassmannians, cluster algebras and scattering amplitudes”, J. High Energy Phys., 2020:4 (2020), 146, 22 pp., arXiv: 1907.01053 | DOI
[18] Drummond J., Foster J., Gürdoğan O., Kalousios C., “Algebraic singularities of scattering amplitudes from tropical geometry”, J. High Energy Phys., 2021:4 (2021), 002, 19 pp., arXiv: 1912.08217 | DOI
[19] Early N., Generalized permutohedra in the kinematic space, arXiv: 1804.05460
[20] Early N., From weakly separated collections to matroid subdivisions, arXiv: 1910.11522
[21] Early N., Planar kinematic invariants, matroid subdivisions and generalized Feynman diagrams, arXiv: 1912.13513
[22] Elvang H., Huang Y.-T., Scattering amplitudes, arXiv: 1308.1697
[23] Eremenko A., Gabrielov A., “Degrees of real Wronski maps”, Discrete Comput. Geom., 28 (2002), 331–347, arXiv: math.AG/0108133 | DOI
[24] Fairlie D. B., “A coding of real null four-momenta into world-sheet coordinates”, Adv. Math. Phys., 2009 (2009), 284689, 8 pp., arXiv: 0805.2263 | DOI
[25] Fairlie D. B., Roberts D. E., Dual models without tachyons – a new approach, Preprint PRINT-72-2440, Durham University, 1972
[26] He S., Ren L., Zhang Y., “Notes on polytopes, amplitudes and boundary configurations for Grassmannian string integrals”, J. High Energy Phys., 2020:4 (2020), 140, 37 pp., arXiv: 2001.09603 | DOI
[27] Henke N., Papathanasiou G., How tropical are seven- and eight-particle amplitudes?, J. High Energy Phys., 2020:8 (2020), 005, 49 pp., arXiv: 1912.08254 | DOI
[28] Herrmann S., Jensen A., Joswig M., Sturmfels B., “How to draw tropical planes”, Electron. J. Combin., 16:2 (2009), 6, 26 pp., arXiv: 0808.2383 | DOI
[29] Hodges A., “Eliminating spurious poles from gauge-theoretic amplitudes”, J. High Energy Phys., 2013:5 (2013), 135, 23 pp., arXiv: 0905.1473 | DOI
[30] Lukowski T., Parisi M., Williams L. K., The positive tropical Grassmannian, the hypersimplex, and the $m=2$ amplituhedron, arXiv: 2002.06164
[31] Mukhin E., Tarasov V., Varchenko A., “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22 (2009), 909–940, arXiv: 0711.4079 | DOI
[32] Purbhoo K., “Jeu de taquin and a monodromy problem for Wronskians of polynomials”, Adv. Math., 224 (2010), 827–862, arXiv: 0902.1321 | DOI
[33] Santos F., Stump C., Welker V., “Noncrossing sets and a Grassmann associahedron”, Forum Math. Sigma, 5 (2017), e5, 49 pp., arXiv: 1403.8133 | DOI
[34] Speyer D., Sturmfels B., “The tropical Grassmannian”, Adv. Geom., 4 (2004), 389–411, arXiv: math.AG/0304218 | DOI
[35] Speyer D., Williams L., “The tropical totally positive Grassmannian”, J. Algebraic Combin., 22 (2005), 189–210, arXiv: math.CO/0312297 | DOI
[36] Speyer D., Williams L. K., “The positive Dressian equals the positive tropical Grassmannian”, Trans. Amer. Math. Soc. Ser. B, 8 (2021), arXiv: 2003.10231 | DOI
[37] Speyer D. E., “Schubert problems with respect to osculating flags of stable rational curves”, Algebr. Geom., 1 (2014), 14–45, arXiv: 1209.5409 | DOI
[38] Sulanke R. A., “Generalizing Narayana and Schröder numbers to higher dimensions”, Electron. J. Combin., 11 (2004), 54, 20 pp., arXiv: 1209.5409 | DOI
[39] The on-line encyclopedia of integer sequences, http://oeis.org/A060854