@article{SIGMA_2021_17_a76,
author = {Dmitri R. Yafaev},
title = {Second-Order {Differential} {Operators} in the {Limit} {Circle} {Case}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a76/}
}
Dmitri R. Yafaev. Second-Order Differential Operators in the Limit Circle Case. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a76/
[1] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York – Toronto – London, 1955
[2] Naimark M. A., Linear differential operators, Ungar, New York, 1968
[3] Nevanlinna R., “Asymptotische Entwickelungen beschränkter Funktionen und das Stieltjessche Momentenproblem”, Ann. Acad. Sci. Fenn. A, 18:5 (1922), 1–52
[4] Reed M., Simon B., Methods of modern mathematical physics, v. II, Fourier analysis, self-adjointness, Academic Press, New York – London, 1975
[5] Schmüdgen K., Unbounded self-adjoint operators on Hilbert space, Graduate Texts in Mathematics, 265, Springer, Dordrecht, 2012 | DOI
[6] Simon B., “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137 (1998), 82–203 | DOI
[7] Yafaev D. R., “Analytic scattering theory for Jacobi operators and Bernstein–Szegö asymptotics of orthogonal polynomials”, Rev. Math. Phys., 30 (2018), 1840019, 47 pp. | DOI
[8] Yafaev D. R., “Semiclassical asymptotic behavior of orthogonal polynomials”, Lett. Math. Phys., 110 (2020), 2857–2891, arXiv: 1811.09254 | DOI
[9] Yafaev D. R., “Self-adjoint Jacobi operators in the limit circle case”, J. Operator Theory (to appear) , arXiv: 2104.13609
[10] Zettl A., Sturm–Liouville theory, Mathematical Surveys and Monographs, 121, Amer. Math. Soc., Providence, RI, 2005 | DOI