Resurgent Analysis of Ward–Schwinger–Dyson Equations
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Building on our recent derivation of the Ward–Schwinger–Dyson equations for the cubic interaction model, we present here the first steps of their resurgent analysis. In our derivation of the WSD equations, we made sure that they had the properties of compatibility with the renormalisation group equations and independence from a regularisation procedure which was known to allow for the comparable studies in the Wess–Zumino model. The interactions between the transseries terms for the anomalous dimensions of the field and the vertex is at the origin of unexpected features, for which the effect of higher order corrections is not precisely known at this stage: we are only at the beginning of the journey to use resurgent methods to decipher non-perturbative effects in quantum field theory.
Keywords: renormalization, Schwinger–Dyson equation, resurgence.
@article{SIGMA_2021_17_a74,
     author = {Marc P. Bellon and Enrico I. Russo},
     title = {Resurgent {Analysis} of {Ward{\textendash}Schwinger{\textendash}Dyson} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a74/}
}
TY  - JOUR
AU  - Marc P. Bellon
AU  - Enrico I. Russo
TI  - Resurgent Analysis of Ward–Schwinger–Dyson Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a74/
LA  - en
ID  - SIGMA_2021_17_a74
ER  - 
%0 Journal Article
%A Marc P. Bellon
%A Enrico I. Russo
%T Resurgent Analysis of Ward–Schwinger–Dyson Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a74/
%G en
%F SIGMA_2021_17_a74
Marc P. Bellon; Enrico I. Russo. Resurgent Analysis of Ward–Schwinger–Dyson Equations. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a74/

[1] Aniceto I., Schiappa R., “Nonperturbative ambiguities and the reality of resurgent transseries”, Comm. Math. Phys., 335 (2015), 183–245, arXiv: 1308.1115 | DOI

[2] Aniceto I., Schiappa R., Vonk M., “The resurgence of instantons in string theory”, Commun. Number Theory Phys., 6 (2012), 339–496, arXiv: 1106.5922 | DOI

[3] Argyres P., Ünsal M., “A semiclassical realization of infrared renormalons”, Phys. Rev. Lett., 109 (2012), 121601, 4 pp., arXiv: 1204.1661 | DOI

[4] Ashie M., Morikawa O., Suzuki H., Takaura H., “More on the infrared renormalon in ${\rm SU}(N)$ QCD(adj.) on $\mathbb R^3\times S^1$”, Prog. Theor. Exp. Phys., 2020 (2020), 093B02, 30 pp., arXiv: 2005.07407 | DOI

[5] Bellon M. P., “Approximate differential equations for renormalization group functions in models free of vertex divergencies”, Nuclear Phys. B, 826 (2010), 522–531, arXiv: 0907.2296 | DOI

[6] Bellon M. P., “An efficient method for the solution of Schwinger–Dyson equations for propagators”, Lett. Math. Phys., 94 (2010), 77–86, arXiv: 1005.0196 | DOI

[7] Bellon M. P., Clavier P. J., “Higher order corrections to the asymptotic perturbative solution of a Schwinger–Dyson equation”, Lett. Math. Phys., 104 (2014), 749–770, arXiv: 1311.1160 | DOI

[8] Bellon M. P., Clavier P. J., “A Schwinger–Dyson equation in the Borel plane: singularities of the solution”, Lett. Math. Phys., 105 (2015), 795–825, arXiv: 1411.7190 | DOI

[9] Bellon M. P., Clavier P. J., “Alien calculus and a Schwinger–Dyson equation: two-point function with a nonperturbative mass scale”, Lett. Math. Phys., 108 (2018), 391–412, arXiv: 1612.07813 | DOI

[10] Bellon M. P., Russo E. I., “Ward–Schwinger–Dyson equations in $\phi^3_6$ quantum field theory”, Lett. Math. Phys., 111 (2021), 42, 31 pp., arXiv: 2007.15675 | DOI

[11] Bellon M. P., Schaposnik F. A., “Renormalization group functions for the Wess–Zumino model: up to 200 loops through Hopf algebras”, Nuclear Phys. B, 800 (2008), 517–526, arXiv: 0801.0727 | DOI

[12] Bellon M. P., Schaposnik F. A., “Higher loop corrections to a Schwinger–Dyson equation”, Lett. Math. Phys., 103 (2013), 881–893, arXiv: 1205.0022 | DOI

[13] Bouillot O., Invariants Analytiques des Difféomorphismes et MultiZêtas, Ph.D. Thesis, Université Paris-Sud 11, 2011 http://tel.archives-ouvertes.fr/tel-00647909

[14] Costin O., Dunne G. V., “Physical resurgent extrapolation”, Phys. Lett. B, 808 (2020), 135627, 7 pp., arXiv: 2003.07451 | DOI

[15] Dewitt B. S., Dynamical theory of groups and fields, Gordon and Breach Science Publishers, New York – London – Paris, 1965

[16] Dunne G. V., Ünsal M., “Uniform WKB, multi-instantons, and resurgent trans-series”, Phys. Rev. D, 89 (2014), 105009, 22 pp., arXiv: 1401.5202 | DOI

[17] Gracey J. A., “Four loop renormalization of $\phi^3$ theory in six dimensions”, Phys. Rev. D, 92 (2015), 025012, 31 pp., arXiv: 1506.03357 | DOI

[18] Gracey J. A., “Asymptotic freedom from the two-loop term of the $\beta$ function in a cubic theory”, Phys. Rev. D, 101 (2020), 125022, 13 pp., arXiv: 2004.14208 | DOI

[19] Hayashi Y., Kondo K. I., “Reconstructing confined particles with complex singularities”, Phys. Rev. D, 103 (2021), L111504, 7 pp., arXiv: 2103.14322 | DOI

[20] Mariño M., Reis T., “Renormalons in integrable field theories”, J. High Energy Phys., 2020:4 (2020), 160, 36 pp., arXiv: 1909.12134 | DOI

[21] Mitschi C., Sauzin D., Divergent series, summability and resurgence, v. I, Lecture Notes in Math., 2153, Monodromy and resurgence, Springer, Cham, 2016 | DOI

[22] Parisi G., “XI. The Borel transform and the renormalization group”, Phys. Rep., 49 (1979), 215–219 | DOI

[23] Stingl M., Field-theory amplitudes as resurgent functions, arXiv: hep-ph/0207349

[24] Stingl M., “A systematic extended iterative solution for quantum chromodynamics”, Z. Phys. A, 353 (1996), 423–445, arXiv: hep-th/9502157 | DOI

[25] van Baalen G., Kreimer D., Uminsky D., Yeats K., “The QCD $\beta$-function from global solutions to Dyson–Schwinger equations”, Ann. Physics, 325 (2010), 300–324, arXiv: 0906.1754 | DOI