@article{SIGMA_2021_17_a74,
author = {Marc P. Bellon and Enrico I. Russo},
title = {Resurgent {Analysis} of {Ward{\textendash}Schwinger{\textendash}Dyson} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a74/}
}
Marc P. Bellon; Enrico I. Russo. Resurgent Analysis of Ward–Schwinger–Dyson Equations. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a74/
[1] Aniceto I., Schiappa R., “Nonperturbative ambiguities and the reality of resurgent transseries”, Comm. Math. Phys., 335 (2015), 183–245, arXiv: 1308.1115 | DOI
[2] Aniceto I., Schiappa R., Vonk M., “The resurgence of instantons in string theory”, Commun. Number Theory Phys., 6 (2012), 339–496, arXiv: 1106.5922 | DOI
[3] Argyres P., Ünsal M., “A semiclassical realization of infrared renormalons”, Phys. Rev. Lett., 109 (2012), 121601, 4 pp., arXiv: 1204.1661 | DOI
[4] Ashie M., Morikawa O., Suzuki H., Takaura H., “More on the infrared renormalon in ${\rm SU}(N)$ QCD(adj.) on $\mathbb R^3\times S^1$”, Prog. Theor. Exp. Phys., 2020 (2020), 093B02, 30 pp., arXiv: 2005.07407 | DOI
[5] Bellon M. P., “Approximate differential equations for renormalization group functions in models free of vertex divergencies”, Nuclear Phys. B, 826 (2010), 522–531, arXiv: 0907.2296 | DOI
[6] Bellon M. P., “An efficient method for the solution of Schwinger–Dyson equations for propagators”, Lett. Math. Phys., 94 (2010), 77–86, arXiv: 1005.0196 | DOI
[7] Bellon M. P., Clavier P. J., “Higher order corrections to the asymptotic perturbative solution of a Schwinger–Dyson equation”, Lett. Math. Phys., 104 (2014), 749–770, arXiv: 1311.1160 | DOI
[8] Bellon M. P., Clavier P. J., “A Schwinger–Dyson equation in the Borel plane: singularities of the solution”, Lett. Math. Phys., 105 (2015), 795–825, arXiv: 1411.7190 | DOI
[9] Bellon M. P., Clavier P. J., “Alien calculus and a Schwinger–Dyson equation: two-point function with a nonperturbative mass scale”, Lett. Math. Phys., 108 (2018), 391–412, arXiv: 1612.07813 | DOI
[10] Bellon M. P., Russo E. I., “Ward–Schwinger–Dyson equations in $\phi^3_6$ quantum field theory”, Lett. Math. Phys., 111 (2021), 42, 31 pp., arXiv: 2007.15675 | DOI
[11] Bellon M. P., Schaposnik F. A., “Renormalization group functions for the Wess–Zumino model: up to 200 loops through Hopf algebras”, Nuclear Phys. B, 800 (2008), 517–526, arXiv: 0801.0727 | DOI
[12] Bellon M. P., Schaposnik F. A., “Higher loop corrections to a Schwinger–Dyson equation”, Lett. Math. Phys., 103 (2013), 881–893, arXiv: 1205.0022 | DOI
[13] Bouillot O., Invariants Analytiques des Difféomorphismes et MultiZêtas, Ph.D. Thesis, Université Paris-Sud 11, 2011 http://tel.archives-ouvertes.fr/tel-00647909
[14] Costin O., Dunne G. V., “Physical resurgent extrapolation”, Phys. Lett. B, 808 (2020), 135627, 7 pp., arXiv: 2003.07451 | DOI
[15] Dewitt B. S., Dynamical theory of groups and fields, Gordon and Breach Science Publishers, New York – London – Paris, 1965
[16] Dunne G. V., Ünsal M., “Uniform WKB, multi-instantons, and resurgent trans-series”, Phys. Rev. D, 89 (2014), 105009, 22 pp., arXiv: 1401.5202 | DOI
[17] Gracey J. A., “Four loop renormalization of $\phi^3$ theory in six dimensions”, Phys. Rev. D, 92 (2015), 025012, 31 pp., arXiv: 1506.03357 | DOI
[18] Gracey J. A., “Asymptotic freedom from the two-loop term of the $\beta$ function in a cubic theory”, Phys. Rev. D, 101 (2020), 125022, 13 pp., arXiv: 2004.14208 | DOI
[19] Hayashi Y., Kondo K. I., “Reconstructing confined particles with complex singularities”, Phys. Rev. D, 103 (2021), L111504, 7 pp., arXiv: 2103.14322 | DOI
[20] Mariño M., Reis T., “Renormalons in integrable field theories”, J. High Energy Phys., 2020:4 (2020), 160, 36 pp., arXiv: 1909.12134 | DOI
[21] Mitschi C., Sauzin D., Divergent series, summability and resurgence, v. I, Lecture Notes in Math., 2153, Monodromy and resurgence, Springer, Cham, 2016 | DOI
[22] Parisi G., “XI. The Borel transform and the renormalization group”, Phys. Rep., 49 (1979), 215–219 | DOI
[23] Stingl M., Field-theory amplitudes as resurgent functions, arXiv: hep-ph/0207349
[24] Stingl M., “A systematic extended iterative solution for quantum chromodynamics”, Z. Phys. A, 353 (1996), 423–445, arXiv: hep-th/9502157 | DOI
[25] van Baalen G., Kreimer D., Uminsky D., Yeats K., “The QCD $\beta$-function from global solutions to Dyson–Schwinger equations”, Ann. Physics, 325 (2010), 300–324, arXiv: 0906.1754 | DOI