@article{SIGMA_2021_17_a73,
author = {Tomasz Stachowiak and Andrzej J. Maciejewski},
title = {Non-Integrability of the {Kepler} and the {Two-Body} {Problems} on the {Heisenberg} {Group}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a73/}
}
TY - JOUR AU - Tomasz Stachowiak AU - Andrzej J. Maciejewski TI - Non-Integrability of the Kepler and the Two-Body Problems on the Heisenberg Group JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a73/ LA - en ID - SIGMA_2021_17_a73 ER -
%0 Journal Article %A Tomasz Stachowiak %A Andrzej J. Maciejewski %T Non-Integrability of the Kepler and the Two-Body Problems on the Heisenberg Group %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a73/ %G en %F SIGMA_2021_17_a73
Tomasz Stachowiak; Andrzej J. Maciejewski. Non-Integrability of the Kepler and the Two-Body Problems on the Heisenberg Group. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a73/
[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Encyclopaedia of Mathematical Sciences, 3, 3rd ed., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl
[2] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The spatial problem of 2 bodies on a sphere. Reduction and stochasticity”, Regul. Chaotic Dyn., 21 (2016), 556–580 | DOI | MR | Zbl
[3] Compoint E., Weil J. A., “Absolute reducibility of differential operators and Galois groups”, J. Algebra, 275 (2004), 77–105 | DOI | MR | Zbl
[4] Dods V., Shanbrom C., “Self-similarity in the Kepler–Heisenberg problem”, J. Nonlinear Sci., 31 (2021), 49, arXiv: 1912.12375 | DOI | MR | Zbl
[5] Duval A., Loday-Richaud M., “Kovačič's algorithm and its application to some families of special functions”, Appl. Algebra Engrg. Comm. Comput., 3 (1992), 211–246 | DOI | MR | Zbl
[6] Folland G. B., “A fundamental solution for a subelliptic operator”, Bull. Amer. Math. Soc., 79 (1973), 373–376 | DOI | MR | Zbl
[7] Kovacic J. J., “An algorithm for solving second order linear homogeneous differential equations”, J. Symbolic Comput., 2 (1986), 3–43 | DOI | MR | Zbl
[8] Maciejewski A. J., Przybylska M., “Integrability of Hamiltonian systems with algebraic potentials”, Phys. Lett. A, 380 (2016), 76–82 | DOI | MR | Zbl
[9] Montgomery R., Shanbrom C., “Keplerian dynamics on the Heisenberg group and elsewhere”, Geometry, Mechanics, and Dynamics, Fields Inst. Commun., 73, Springer, New York, 2015, 319–342, arXiv: 1212.2713 | DOI | MR | Zbl
[10] Morales-Ruiz J. J., Ramis J. P., “Galoisian obstructions to integrability of Hamiltonian systems. I”, Methods Appl. Anal., 8 (2001), 33–95 | DOI | MR | Zbl
[11] Rehm H. P., “Galois groups and elementary solutions of some linear differential equations”, J. Reine Angew. Math., 307–308 (1979), 1–7 | DOI | MR | Zbl
[12] Shanbrom C., “Periodic orbits in the Kepler–Heisenberg problem”, J. Geom. Mech., 6 (2014), 261–278, arXiv: 1311.6061 | DOI | MR | Zbl
[13] Singer M. F., Ulmer F., “Necessary conditions for Liouvillian solutions of (third order) linear differential equations”, Appl. Algebra Engrg. Comm. Comput., 6 (1995), 1–22 | DOI | MR | Zbl
[14] Walter W., Ordinary differential equations, Graduate Texts in Mathematics, 182, Springer-Verlag, New York, 1998 | DOI | MR | Zbl