Non-Integrability of the Kepler and the Two-Body Problems on the Heisenberg Group
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The analog of the Kepler system defined on the Heisenberg group introduced by Montgomery and Shanbrom in [Fields Inst. Commun., Vol. 73, Springer, New York, 2015, 319–342, arXiv:1212.2713] is integrable on the zero level of the Hamiltonian. We show that in all other cases the system is not Liouville integrable due to the lack of additional meromorphic first integrals. We prove that the analog of the two-body problem on the Heisenberg group is not integrable in the Liouville sense.
Keywords: Kepler problem, two-body problem, Heisenberg group, differential Galois group, integrability, sub-Riemannian manifold.
@article{SIGMA_2021_17_a73,
     author = {Tomasz Stachowiak and Andrzej J. Maciejewski},
     title = {Non-Integrability of the {Kepler} and the {Two-Body} {Problems} on the {Heisenberg} {Group}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a73/}
}
TY  - JOUR
AU  - Tomasz Stachowiak
AU  - Andrzej J. Maciejewski
TI  - Non-Integrability of the Kepler and the Two-Body Problems on the Heisenberg Group
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a73/
LA  - en
ID  - SIGMA_2021_17_a73
ER  - 
%0 Journal Article
%A Tomasz Stachowiak
%A Andrzej J. Maciejewski
%T Non-Integrability of the Kepler and the Two-Body Problems on the Heisenberg Group
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a73/
%G en
%F SIGMA_2021_17_a73
Tomasz Stachowiak; Andrzej J. Maciejewski. Non-Integrability of the Kepler and the Two-Body Problems on the Heisenberg Group. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a73/

[1] Arnold V. I., Kozlov V. V., Neishtadt A. I., Mathematical aspects of classical and celestial mechanics, Encyclopaedia of Mathematical Sciences, 3, 3rd ed., Springer-Verlag, Berlin, 2006 | DOI | MR | Zbl

[2] Borisov A. V., Mamaev I. S., Bizyaev I. A., “The spatial problem of 2 bodies on a sphere. Reduction and stochasticity”, Regul. Chaotic Dyn., 21 (2016), 556–580 | DOI | MR | Zbl

[3] Compoint E., Weil J. A., “Absolute reducibility of differential operators and Galois groups”, J. Algebra, 275 (2004), 77–105 | DOI | MR | Zbl

[4] Dods V., Shanbrom C., “Self-similarity in the Kepler–Heisenberg problem”, J. Nonlinear Sci., 31 (2021), 49, arXiv: 1912.12375 | DOI | MR | Zbl

[5] Duval A., Loday-Richaud M., “Kovačič's algorithm and its application to some families of special functions”, Appl. Algebra Engrg. Comm. Comput., 3 (1992), 211–246 | DOI | MR | Zbl

[6] Folland G. B., “A fundamental solution for a subelliptic operator”, Bull. Amer. Math. Soc., 79 (1973), 373–376 | DOI | MR | Zbl

[7] Kovacic J. J., “An algorithm for solving second order linear homogeneous differential equations”, J. Symbolic Comput., 2 (1986), 3–43 | DOI | MR | Zbl

[8] Maciejewski A. J., Przybylska M., “Integrability of Hamiltonian systems with algebraic potentials”, Phys. Lett. A, 380 (2016), 76–82 | DOI | MR | Zbl

[9] Montgomery R., Shanbrom C., “Keplerian dynamics on the Heisenberg group and elsewhere”, Geometry, Mechanics, and Dynamics, Fields Inst. Commun., 73, Springer, New York, 2015, 319–342, arXiv: 1212.2713 | DOI | MR | Zbl

[10] Morales-Ruiz J. J., Ramis J. P., “Galoisian obstructions to integrability of Hamiltonian systems. I”, Methods Appl. Anal., 8 (2001), 33–95 | DOI | MR | Zbl

[11] Rehm H. P., “Galois groups and elementary solutions of some linear differential equations”, J. Reine Angew. Math., 307–308 (1979), 1–7 | DOI | MR | Zbl

[12] Shanbrom C., “Periodic orbits in the Kepler–Heisenberg problem”, J. Geom. Mech., 6 (2014), 261–278, arXiv: 1311.6061 | DOI | MR | Zbl

[13] Singer M. F., Ulmer F., “Necessary conditions for Liouvillian solutions of (third order) linear differential equations”, Appl. Algebra Engrg. Comm. Comput., 6 (1995), 1–22 | DOI | MR | Zbl

[14] Walter W., Ordinary differential equations, Graduate Texts in Mathematics, 182, Springer-Verlag, New York, 1998 | DOI | MR | Zbl