@article{SIGMA_2021_17_a70,
author = {Shunya Doi and Naruhiko Aizawa},
title = {$\mathbb{Z}_2^3${-Graded} {Extensions} of {Lie} {Superalgebras} and {Superconformal} {Quantum} {Mechanics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a70/}
}
TY - JOUR
AU - Shunya Doi
AU - Naruhiko Aizawa
TI - $\mathbb{Z}_2^3$-Graded Extensions of Lie Superalgebras and Superconformal Quantum Mechanics
JO - Symmetry, integrability and geometry: methods and applications
PY - 2021
VL - 17
UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a70/
LA - en
ID - SIGMA_2021_17_a70
ER -
%0 Journal Article
%A Shunya Doi
%A Naruhiko Aizawa
%T $\mathbb{Z}_2^3$-Graded Extensions of Lie Superalgebras and Superconformal Quantum Mechanics
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a70/
%G en
%F SIGMA_2021_17_a70
Shunya Doi; Naruhiko Aizawa. $\mathbb{Z}_2^3$-Graded Extensions of Lie Superalgebras and Superconformal Quantum Mechanics. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a70/
[1] Aizawa N., “Generalization of superalgebras to color superalgebras and their representations”, Adv. Appl. Clifford Algebr., 28 (2018), 28, 14 pp., arXiv: 1712.03008 | DOI | MR
[2] Aizawa N., Amakawa K., Doi S., “$\mathbb{Z}_2^n$-graded extensions of supersymmetric quantum mechanics via Clifford algebras”, J. Math. Phys., 61 (2020), 052105, 13 pp., arXiv: 1912.11195 | DOI | MR | Zbl
[3] Aizawa N., Amakawa K., Doi S., “$\mathcal N$-extension of double-graded supersymmetric and superconformal quantum mechanics”, J. Phys. A: Math. Theor., 53 (2020), 065205, 14 pp., arXiv: 1905.06548 | DOI | MR
[4] Aizawa N., Cunha I. E., Kuznetsova Z., Toppan F., “On the spectrum-generating superalgebras of the deformed one-dimensional quantum oscillators”, J. Math. Phys., 60 (2019), 042102, 18 pp., arXiv: 1812.00873 | DOI | MR | Zbl
[5] Aizawa N., Kuznetsova Z., Tanaka H., Toppan F., “$\mathbb{Z}_2\times\mathbb{Z}_2$-graded Lie symmetries of the Lévy-Leblond equations”, Prog. Theor. Exp. Phys., 2016, 2016, 123A01, 26 pp., arXiv: 1609.08224 | DOI | MR | Zbl
[6] Aizawa N., Kuznetsova Z., Tanaka H., Toppan F., “Generalized supersymmetry and Lévy-Leblond equation”, Physical and Mathematical Aspects of Symmetries, eds. J.-P. Gazeau, S. Faci, T. Micklitz, R. Scherer, F. Toppan, Springer, Cham, 2017, 79–84, arXiv: 1609.08760 | DOI | Zbl
[7] Aizawa N., Kuznetsova Z., Toppan F., “The quasi-nonassociative exceptional $F(4)$ deformed quantum oscillator”, J. Math. Phys., 59 (2018), 022101, 13 pp., arXiv: 1711.02923 | DOI | MR | Zbl
[8] Aizawa N., Kuznetsova Z., Toppan F., “${\mathbb Z}_2\times {\mathbb Z}_2$-graded mechanics: the classical theory”, Eur. Phys. J. C, 80 (2020), 668, 14 pp., arXiv: 2003.06470 | DOI | MR
[9] Aizawa N., Kuznetsova Z., Toppan F., “$\mathbb Z_2\times \mathbb Z _2$-graded mechanics: the quantization”, Nuclear Phys. B, 967 (2021), 115426, 30 pp., arXiv: 2021.11542 | DOI | MR
[10] Amakawa K., Aizawa N., “A classification of lowest weight irreducible modules over $\mathbb{Z}_2^2$-graded extension of $\mathfrak{osp}(1|2)$”, J. Math. Phys., 62 (2021), 043502, 18 pp., arXiv: 2011.03714 | DOI | MR | Zbl
[11] Bellucci S., Krivonos S., “Supersymmetric mechanics in superspace”, Supersymmetric Mechanics, v. 1, Lecture Notes in Phys., 698, Springer, Berlin, 2006, 49–96, arXiv: hep-th/0602199 | DOI | MR | Zbl
[12] Bruce A. J., “On a $\mathbb{Z}_2^n$-graded version of supersymmetry”, Symmetry, 11 (2019), 116, 20 pp., arXiv: 1812.02943 | DOI | Zbl
[13] Bruce A. J., “$\mathbb Z_2 \times \mathbb Z_2$-graded supersymmetry: 2-d sigma models”, J. Phys. A: Math. Theor., 53 (2020), 455201, 25 pp., arXiv: 2006.08169 | DOI | MR
[14] Bruce A. J., Duplij S., “Double-graded supersymmetric quantum mechanics”, J. Math. Phys., 61 (2020), 063503, 13 pp., arXiv: 1904.06975 | DOI | MR | Zbl
[15] Carrion H. L., Rojas M., Toppan F., “Quaternionic and octonionic spinors. A classification”, J. High Energy Phys., 2003 (2003), 040, 28 pp., arXiv: hep-th/0302113 | DOI | MR
[16] de Alfaro V., Fubini S., Furlan G., “Conformal invariance in quantum mechanics”, Nuovo Cimento A, 34 (1976), 569–612 | DOI
[17] Fedoruk S., Ivanov E., Lechtenfeld O., “Superconformal mechanics”, J. Phys. A: Math. Theor., 45 (2012), 173001, 59 pp., arXiv: 1112.1947 | DOI | MR | Zbl
[18] Le Roy B., “$\mathbb{Z}_n^3$-graded colored supersymmetry”, Czechoslovak J. Phys., 47 (1997), 47–54, arXiv: hep-th/9608074 | DOI | MR | Zbl
[19] Okazaki T., Superconformal quantum mechanics from M2-branes, Ph.D. Thesis, California Institute of Technology, USA; Osaka University, Japan, arXiv: 1503.03906 | Zbl
[20] Okubo S., “Real representations of finite Clifford algebras. I Classification”, J. Math. Phys., 32 (1991), 1657–1668 | DOI | MR | Zbl
[21] Papadopoulos G., “Conformal and superconformal mechanics”, Classical Quantum Gravity, 17 (2000), 3715–3741, arXiv: hep-th/0002007 | DOI | MR | Zbl
[22] Poncin N., “Towards integration on colored supermanifolds”, Geometry of Jets and Fields, Banach Center Publ., 110, Polish Acad. Sci. Inst. Math., Warsaw, 2016, 201–217 | DOI | MR | Zbl
[23] Ree R., “Generalized Lie elements”, Canadian J. Math., 12 (1960), 493–502 | DOI | MR | Zbl
[24] Rittenberg V., Wyler D., “Generalized superalgebras”, Nuclear Phys. B, 139 (1978), 189–202 | DOI | MR
[25] Rittenberg V., Wyler D., “Sequences of $Z_{2}\oplus Z_{2}$ graded Lie algebras and superalgebras”, J. Math. Phys., 19 (1978), 2193–2200 | DOI | MR | Zbl
[26] Scheunert M., “Generalized Lie algebras”, J. Math. Phys., 20 (1979), 712–720 | DOI | MR | Zbl
[27] Tolstoy V. N., “Super-de Sitter and alternative super-Poincaré symmetries”, Lie Theory and its Applications in Physics, Springer Proc. Math. Stat., 111, Springer, Tokyo, 2014, 357–367, arXiv: 1610.01566 | DOI | MR | Zbl
[28] Toppan F., “$\mathbb Z_2 \times \mathbb Z_2$-graded parastatistics in multiparticle quantum Hamiltonians”, J. Phys. A: Math. Theor., 54 (2021), 115203, 35 pp., arXiv: 2008.11554 | DOI | MR