@article{SIGMA_2021_17_a7,
author = {Shinji Koshida},
title = {Pfaffian {Point} {Processes} from {Free} {Fermion} {Algebras:} {Perfectness} and {Conditional} {Measures}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a7/}
}
TY - JOUR AU - Shinji Koshida TI - Pfaffian Point Processes from Free Fermion Algebras: Perfectness and Conditional Measures JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a7/ LA - en ID - SIGMA_2021_17_a7 ER -
Shinji Koshida. Pfaffian Point Processes from Free Fermion Algebras: Perfectness and Conditional Measures. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a7/
[1] Aissen M., Schoenberg I. J., Whitney A. M., “On the generating functions of totally positive sequences. I”, J. Anal. Math., 2 (1952), 93–103 | DOI | MR | Zbl
[2] Araki H., “On quasifree states of ${\rm CAR}$ and Bogoliubov automorphisms”, Publ. Res. Inst. Math. Sci., 6 (1970), 385–442 | DOI | MR
[3] Binnenhei C., “Implementation of endomorphisms of the CAR algebra”, Rev. Math. Phys., 7 (1995), 833–869, arXiv: physics/9701009 | DOI | MR | Zbl
[4] Borodin A., “Multiplicative central measures on the Schur graph”, J. Math. Sci., 96 (1999), 3472–3477 | DOI | MR
[5] Borodin A., “Determinantal point processes”, The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford, 2011, 231–249, arXiv: 0911.1153 | MR | Zbl
[6] Borodin A., Olshanski G., Point processes and the infinite symmetric group. Part II: Higher correlation functions, arXiv: math.RT/9804087
[7] Borodin A., Olshanski G., Point processes and the infinite symmetric group. Part III: Fermion point processes, arXiv: math.RT/9804088
[8] Borodin A., Olshanski G., Point processes and the infinite symmetric group. Part IV: Matrix Whittaker kernel, arXiv: math.RT/9810013 | MR
[9] Borodin A., Olshanski G., “Point processes and the infinite symmetric group”, Math. Res. Lett., 5 (1998), 799–816, arXiv: math.RT/9810015 | DOI | MR | Zbl
[10] Borodin A., Rains E. M., “Eynard–Mehta theorem, Schur process, and their Pfaffian analogs”, J. Stat. Phys., 121 (2005), 291–317, arXiv: math-ph/0409059 | DOI | MR | Zbl
[11] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, v. 1, Texts and Monographs in Physics, $C^\ast$- and $W^\ast$-algebras, symmetry groups, decomposition of states, 2nd ed., Springer-Verlag, New York, 1987 | DOI | MR | Zbl
[12] Bratteli O., Robinson D. W., Operator algebras and quantum statistical mechanics, v. 2, Texts and Monographs in Physics, Equilibrium states. Models in quantum statistical mechanics, 2nd ed., Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[13] Bufetov A. I., Cunden F. D., Qiu Y., $J$-Hermitian determinantal point processes: balanced rigidity and balanced Palm equivalence, arXiv: 1912.10743 | MR
[14] Bufetov A. I., Olshanski G., A hierarchy of Palm measures for determinantal point processes with gamma kernels, arXiv: 1904.13371
[15] Edrei A., “On the generating functions of totally positive sequences. II”, J. Anal. Math., 2 (1952), 104–109 | DOI | MR | Zbl
[16] Ferrari P. L., “Polynuclear growth on a flat substrate and edge scaling of GOE eigenvalues”, Comm. Math. Phys., 252 (2004), 77–109, arXiv: math-ph/0402053 | DOI | MR | Zbl
[17] Hough J. B., Krishnapur M., Peres Y., Virág B., “Determinantal processes and independence”, Probab. Surv., 3 (2006), 206–229, arXiv: math.PR/0503110 | DOI | MR | Zbl
[18] Ivanov V. N., “Dimensions of skew-shifted Young diagrams and projective characters of the infinite symmetric group”, J. Math. Sci., 96 (1999), 3517–3530 | DOI | MR
[19] Kargin V., “On Pfaffian random point fields”, J. Stat. Phys., 154 (2014), 681–704, arXiv: 1210.6603 | DOI | MR | Zbl
[20] Kassel A., Lévy T., Determinantal probability measures on Grassmannians, arXiv: 1910.06312
[21] Katori M., Tanemura H., “Infinite systems of noncolliding generalized meanders and Riemann–Liouville differintegrals”, Probab. Theory Related Fields, 138 (2007), 113–156, arXiv: math.PR/0506187 | DOI | MR | Zbl
[22] König W., “Orthogonal polynomial ensembles in probability theory”, Probab. Surv., 2 (2005), 385–447, arXiv: math.PR/0403090 | DOI | MR | Zbl
[23] Koshmanenko V., Singular quadratic forms in perturbation theory, Mathematics and its Applications, 474, Kluwer Academic Publishers, Dordrecht, 1999 | DOI | MR | Zbl
[24] Lenard A., “States of classical statistical mechanical systems of infinitely many particles. I”, Arch. Rational Mech. Anal., 59 (1975), 219–239 | DOI | MR
[25] Lenard A., “States of classical statistical mechanical systems of infinitely many particles. II Characterization of correlation measures”, Arch. Rational Mech. Anal., 59 (1975), 240–256 | DOI | MR
[26] Lyons R., “Determinantal probability measures”, Publ. Math. Inst. Hautes Études Sci., 2003, 167–212, arXiv: math.PR/0204325 | DOI | MR | Zbl
[27] Lytvynov E., “Fermion and boson random point processes as particle distributions of infinite free Fermi and Bose gases of finite density”, Rev. Math. Phys., 14 (2002), 1073–1098, arXiv: math-ph/0112006 | DOI | MR | Zbl
[28] Lytvynov E., Mei L., “On the correlation measure of a family of commuting Hermitian operators with applications to particle densities of the quasi-free representations of the CAR and CCR”, J. Funct. Anal., 245 (2007), 62–88, arXiv: math.PR/0608334 | DOI | MR | Zbl
[29] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979 | MR
[30] Matsumoto S., “$\alpha$-Pfaffian, Pfaffian point process and shifted Schur measure”, Linear Algebra Appl., 403 (2005), 369–398, arXiv: math.CO/0411277 | DOI | MR | Zbl
[31] Matsumoto S., “Correlation functions of the shifted Schur measure”, J. Math. Soc. Japan, 57 (2005), 619–637, arXiv: math.CO/0312373 | DOI | MR | Zbl
[32] Matsumoto S., Shirai T., “Correlation functions for zeros of a Gaussian power series and Pfaffians”, Electron. J. Probab., 18 (2013), 49, 18 pp., arXiv: 1212.6108 | DOI | MR | Zbl
[33] Nagao T., “Pfaffian expressions for random matrix correlation functions”, J. Stat. Phys., 129 (2007), 1137–1158, arXiv: 0708.2036 | DOI | MR | Zbl
[34] Nazarov M. L., “Factor representations of the infinite spin-symmetric group”, Russian Math. Surveys, 43 (1988), 229–230 | DOI | MR
[35] Okounkov A., “Infinite wedge and random partitions”, Selecta Math. (N.S.), 7 (2001), 57–81, arXiv: math.RT/9907127 | DOI | MR | Zbl
[36] Olshanski G., Point processes and the infinite symmetric group. Part V: Analysis of the matrix Whittaker kernel, arXiv: math.RT/9810014
[37] Olshanski G., “Point processes related to the infinite symmetric group”, The Orbit Method in Geometry and Physics (Marseille, 2000), Progr. Math., 213, Birkhäuser Boston, Boston, MA, 2003, 349–393 | DOI | MR | Zbl
[38] Olshanski G., “The quasi-invariance property for the Gamma kernel determinantal measure”, Adv. Math., 226 (2011), 2305–2350, arXiv: 0910.0130 | DOI | MR | Zbl
[39] Olshanski G., “Determinantal point processes and fermion quasifree states”, Comm. Math. Phys., 378 (2020), 507–555, arXiv: 2002.10723 | DOI | MR | Zbl
[40] Petrov L., “Random strict partitions and determinantal point processes”, Electron. Commun. Probab., 15 (2010), 162–175, arXiv: 1002.2714 | DOI | MR | Zbl
[41] Petrov L., “Pfaffian stochastic dynamics of strict partitions”, Electron. J. Probab., 16:82 (2011), 2246–2295, arXiv: 1011.3329 | DOI | MR | Zbl
[42] Powers R. T., Størmer E., “Free states of the canonical anticommutation relations”, Comm. Math. Phys., 16 (1970), 1–33 | DOI | MR | Zbl
[43] Rains E. M., Correlation functions for symmetrized increasing subsequences, arXiv: math.CO/0006097
[44] Rédei M., Summers S. J., “Quantum probability theory”, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys., 38 (2007), 390–417, arXiv: quant-ph/0601158 | DOI | MR | Zbl
[45] Ruijsenaars S. N. M., “On Bogoliubov transformations. II The general case”, Ann. Physics, 116 (1978), 105–134 | DOI | MR
[46] Shale D., Stinespring W. F., “Spinor representations of infinite orthogonal groups”, J. Math. Mech., 14 (1965), 315–322 | MR | Zbl
[47] Shirai T., Takahashi Y., “Random point fields associated with certain Fredholm determinants. I Fermion, Poisson and boson point processes”, J. Funct. Anal., 205 (2003), 414–463 | DOI | MR | Zbl
[48] Shirai T., Takahashi Y., “Random point fields associated with certain Fredholm determinants. II Fermion shifts and their ergodic and Gibbs properties”, Ann. Probab., 31 (2003), 1533–1564 | DOI | MR | Zbl
[49] Soshnikov A., “Determinantal random point fields”, Russian Math. Surveys, 55 (2000), 923–975 | DOI | MR | Zbl
[50] Spohn H., “Interacting Brownian particles: a study of Dyson's model”, Hydrodynamic Behavior and Interacting Particle Systems (Minneapolis, Minn., 1986), IMA Vol. Math. Appl., 9, Springer, New York, 1987, 151–179 | DOI | MR
[51] Takesaki M., Theory of operator algebras, v. I, Springer-Verlag, New York – Heidelberg, 1979 | DOI | MR | Zbl
[52] Thoma E., “Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe”, Math. Z., 85 (1964), 40–61 | DOI | MR | Zbl
[53] Tracy C. A., Widom H., “A limit theorem for shifted Schur measures”, Duke Math. J., 123 (2004), 171–208, arXiv: math.PR/0210255 | DOI | MR | Zbl
[54] Vuletić M., “The shifted Schur process and asymptotics of large random strict plane partitions”, Int. Math. Res. Not., 2007, 2007, rnm043, 53 pp., arXiv: math-ph/0702068 | DOI | MR | Zbl
[55] Wang Z.-L., Li S.-H., “BKP hierarchy and Pfaffian point process”, Nuclear Phys. B, 939 (2019), 447–464, arXiv: 1807.02259 | DOI | MR | Zbl