Singularities of Schubert Varieties within a Right Cell
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe an algorithm which pattern embeds, in the sense of Woo–Yong, any Bruhat interval of a symmetric group into an interval whose extremes lie in the same right Kazhdan–Lusztig cell. This apparently harmless fact has applications in finding examples of reducible associated varieties of $\mathfrak{sl}_n$-highest weight modules, as well as in the study of $W$-graphs for symmetric groups, and in comparing various bases of irreducible representations of the symmetric group or its Hecke algebra. For example, we are able to systematically produce many negative answers to a question from the 1980s of Borho–Brylinski and Joseph, which had been settled by Williamson via computer calculations only in 2014.
Keywords: Schubert varieties, interval pattern embedding
Mots-clés : Kazhdan–Lusztig cells, Specht modules.
@article{SIGMA_2021_17_a69,
     author = {Martina Lanini and Peter J. McNamara},
     title = {Singularities of {Schubert} {Varieties} within a {Right} {Cell}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a69/}
}
TY  - JOUR
AU  - Martina Lanini
AU  - Peter J. McNamara
TI  - Singularities of Schubert Varieties within a Right Cell
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a69/
LA  - en
ID  - SIGMA_2021_17_a69
ER  - 
%0 Journal Article
%A Martina Lanini
%A Peter J. McNamara
%T Singularities of Schubert Varieties within a Right Cell
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a69/
%G en
%F SIGMA_2021_17_a69
Martina Lanini; Peter J. McNamara. Singularities of Schubert Varieties within a Right Cell. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a69/

[1] Abe H., Billey S., “Consequences of the Lakshmibai–Sandhya theorem: the ubiquity of permutation patterns in Schubert calculus and related geometry”, Schubert Calculus – Osaka 2012, Adv. Stud. Pure Math., 71, eds. H. Naruse, T. Ikeda, M. Masuda, T. Tanisaki, Math. Soc. Japan, Tokyo, 2016, 1–52, arXiv: 1403.4345 | DOI | MR | Zbl

[2] Ariki S., “Robinson–Schensted correspondence and left cells”, Combinatorial Methods in Representation Theory (Kyoto, 1998), Adv. Stud. Pure Math., 28, Kinokuniya, Tokyo, 2000, 1–20, arXiv: math.QA/9910117 | DOI | MR | Zbl

[3] Borho W., Brylinski J.-L., “Differential operators on homogeneous spaces. III Characteristic varieties of Harish-Chandra modules and of primitive ideals”, Invent. Math., 80 (1985), 1–68 | DOI | MR | Zbl

[4] Bosma W., Cannon J., Playoust C., “The Magma algebra system. I The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl

[5] Garsia A. M., McLarnan T. J., “Relations between Young's natural and the Kazhdan–Lusztig representations of $S_n$”, Adv. Math., 69 (1988), 32–92 | DOI | MR | Zbl

[6] Graham J. J., Lehrer G. I., “Cellular algebras”, Invent. Math., 123 (1996), 1–34 | DOI | MR | Zbl

[7] Howlett R., Nguyen V. M., W-graph magma programs, , 2013 http://www.maths.usyd.edu.au/u/bobh/magma/

[8] Jensen L. T., “The ABC of $p$-cells”, Selecta Math. (N.S.), 26 (2020), 28, 46 pp., arXiv: 1901.02323 | DOI | MR | Zbl

[9] Jensen L. T., Cellularity of the $p$-canonical basis for symmetric groups, arXiv: 2009.11715

[10] Jensen L. T., Williamson G., “The $p$-canonical basis for Hecke algebras”, Categorification and Higher Representation Theory, Contemp. Math., 683, Amer. Math. Soc., Providence, RI, 2017, 333–361, arXiv: 1510.01556 | DOI | MR | Zbl

[11] Joseph A., “On the variety of a highest weight module”, J. Algebra, 88 (1984), 238–278 | DOI | MR | Zbl

[12] Kashiwara M., Saito Y., “Geometric construction of crystal bases”, Duke Math. J., 89 (1997), 9–36, arXiv: q-alg/9606009 | DOI | MR | Zbl

[13] Kazhdan D., Lusztig G., “Representations of Coxeter groups and Hecke algebras”, Invent. Math., 53 (1979), 165–184 | DOI | MR | Zbl

[14] Lakshmibai V., Sandhya B., “Criterion for smoothness of Schubert varieties in ${\rm Sl}(n)/B$”, Proc. Indian Acad. Sci. Math. Sci., 100 (1990), 45–52 | DOI | MR | Zbl

[15] McLarnan T. J., Warrington G. S., “Counterexamples to the 0–1 conjecture”, Represent. Theory, 7 (2003), 181–195, arXiv: math.CO/0209221 | DOI | MR | Zbl

[16] McNamara P. J., Non-perverse parity sheaves on the flag variety, arXiv: 1812.00178

[17] Nguyen V. M., “Type $A$ admissible cells are Kazhdan–Lusztig”, Algebr. Comb., 3 (2020), 55–105, arXiv: 1807.07457 | DOI | MR | Zbl

[18] Stanley R. P., Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[19] Tanisaki T., “Characteristic varieties of highest weight modules and primitive quotients”, Representations of Lie Groups (Kyoto, Hiroshima, 1986), Adv. Stud. Pure Math., 14, Academic Press, Boston, MA, 1988, 1–30 | DOI | MR

[20] Vilonen K., Williamson G., “Characteristic cycles and decomposition numbers”, Math. Res. Lett., 20 (2013), 359–366, arXiv: 1208.1198 | DOI | MR | Zbl

[21] Williamson G., “On an analogue of the James conjecture”, Represent. Theory, 18 (2014), 15–27, arXiv: 1212.0794 | DOI | MR | Zbl

[22] Williamson G., “A reducible characteristic variety in type $A$”, Representations of Reductive Groups, Progr. Math., 312, Birkhäuser/Springer, Cham, 2015, 517–532, arXiv: 1405.3479 | DOI | MR | Zbl

[23] Williamson G., “Schubert calculus and torsion explosion (with a joint appendix with Alex Kontorovich and Peter J. McNamara)”, J. Amer. Math. Soc., 30 (2017), 1023–1046, arXiv: 1309.5055 | DOI | MR | Zbl

[24] Woo A., “Interval pattern avoidance for arbitrary root systems”, Canad. Math. Bull., 53 (2010), 757–762, arXiv: math.CO/0611328 | DOI | MR | Zbl

[25] Woo A., Yong A., “Governing singularities of Schubert varieties”, J. Algebra, 320 (2008), 495–520, arXiv: math.AG/0603273 | DOI | MR | Zbl