Mots-clés : Kazhdan–Lusztig cells, Specht modules.
@article{SIGMA_2021_17_a69,
author = {Martina Lanini and Peter J. McNamara},
title = {Singularities of {Schubert} {Varieties} within a {Right} {Cell}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a69/}
}
Martina Lanini; Peter J. McNamara. Singularities of Schubert Varieties within a Right Cell. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a69/
[1] Abe H., Billey S., “Consequences of the Lakshmibai–Sandhya theorem: the ubiquity of permutation patterns in Schubert calculus and related geometry”, Schubert Calculus – Osaka 2012, Adv. Stud. Pure Math., 71, eds. H. Naruse, T. Ikeda, M. Masuda, T. Tanisaki, Math. Soc. Japan, Tokyo, 2016, 1–52, arXiv: 1403.4345 | DOI | MR | Zbl
[2] Ariki S., “Robinson–Schensted correspondence and left cells”, Combinatorial Methods in Representation Theory (Kyoto, 1998), Adv. Stud. Pure Math., 28, Kinokuniya, Tokyo, 2000, 1–20, arXiv: math.QA/9910117 | DOI | MR | Zbl
[3] Borho W., Brylinski J.-L., “Differential operators on homogeneous spaces. III Characteristic varieties of Harish-Chandra modules and of primitive ideals”, Invent. Math., 80 (1985), 1–68 | DOI | MR | Zbl
[4] Bosma W., Cannon J., Playoust C., “The Magma algebra system. I The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl
[5] Garsia A. M., McLarnan T. J., “Relations between Young's natural and the Kazhdan–Lusztig representations of $S_n$”, Adv. Math., 69 (1988), 32–92 | DOI | MR | Zbl
[6] Graham J. J., Lehrer G. I., “Cellular algebras”, Invent. Math., 123 (1996), 1–34 | DOI | MR | Zbl
[7] Howlett R., Nguyen V. M., W-graph magma programs, , 2013 http://www.maths.usyd.edu.au/u/bobh/magma/
[8] Jensen L. T., “The ABC of $p$-cells”, Selecta Math. (N.S.), 26 (2020), 28, 46 pp., arXiv: 1901.02323 | DOI | MR | Zbl
[9] Jensen L. T., Cellularity of the $p$-canonical basis for symmetric groups, arXiv: 2009.11715
[10] Jensen L. T., Williamson G., “The $p$-canonical basis for Hecke algebras”, Categorification and Higher Representation Theory, Contemp. Math., 683, Amer. Math. Soc., Providence, RI, 2017, 333–361, arXiv: 1510.01556 | DOI | MR | Zbl
[11] Joseph A., “On the variety of a highest weight module”, J. Algebra, 88 (1984), 238–278 | DOI | MR | Zbl
[12] Kashiwara M., Saito Y., “Geometric construction of crystal bases”, Duke Math. J., 89 (1997), 9–36, arXiv: q-alg/9606009 | DOI | MR | Zbl
[13] Kazhdan D., Lusztig G., “Representations of Coxeter groups and Hecke algebras”, Invent. Math., 53 (1979), 165–184 | DOI | MR | Zbl
[14] Lakshmibai V., Sandhya B., “Criterion for smoothness of Schubert varieties in ${\rm Sl}(n)/B$”, Proc. Indian Acad. Sci. Math. Sci., 100 (1990), 45–52 | DOI | MR | Zbl
[15] McLarnan T. J., Warrington G. S., “Counterexamples to the 0–1 conjecture”, Represent. Theory, 7 (2003), 181–195, arXiv: math.CO/0209221 | DOI | MR | Zbl
[16] McNamara P. J., Non-perverse parity sheaves on the flag variety, arXiv: 1812.00178
[17] Nguyen V. M., “Type $A$ admissible cells are Kazhdan–Lusztig”, Algebr. Comb., 3 (2020), 55–105, arXiv: 1807.07457 | DOI | MR | Zbl
[18] Stanley R. P., Enumerative combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[19] Tanisaki T., “Characteristic varieties of highest weight modules and primitive quotients”, Representations of Lie Groups (Kyoto, Hiroshima, 1986), Adv. Stud. Pure Math., 14, Academic Press, Boston, MA, 1988, 1–30 | DOI | MR
[20] Vilonen K., Williamson G., “Characteristic cycles and decomposition numbers”, Math. Res. Lett., 20 (2013), 359–366, arXiv: 1208.1198 | DOI | MR | Zbl
[21] Williamson G., “On an analogue of the James conjecture”, Represent. Theory, 18 (2014), 15–27, arXiv: 1212.0794 | DOI | MR | Zbl
[22] Williamson G., “A reducible characteristic variety in type $A$”, Representations of Reductive Groups, Progr. Math., 312, Birkhäuser/Springer, Cham, 2015, 517–532, arXiv: 1405.3479 | DOI | MR | Zbl
[23] Williamson G., “Schubert calculus and torsion explosion (with a joint appendix with Alex Kontorovich and Peter J. McNamara)”, J. Amer. Math. Soc., 30 (2017), 1023–1046, arXiv: 1309.5055 | DOI | MR | Zbl
[24] Woo A., “Interval pattern avoidance for arbitrary root systems”, Canad. Math. Bull., 53 (2010), 757–762, arXiv: math.CO/0611328 | DOI | MR | Zbl
[25] Woo A., Yong A., “Governing singularities of Schubert varieties”, J. Algebra, 320 (2008), 495–520, arXiv: math.AG/0603273 | DOI | MR | Zbl