@article{SIGMA_2021_17_a68,
author = {Taras Skrypnyk},
title = {Separation of {Variables,} {Quasi-Trigonometric} $r${-Matrices} and {Generalized} {Gaudin} {Models}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a68/}
}
TY - JOUR AU - Taras Skrypnyk TI - Separation of Variables, Quasi-Trigonometric $r$-Matrices and Generalized Gaudin Models JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a68/ LA - en ID - SIGMA_2021_17_a68 ER -
Taras Skrypnyk. Separation of Variables, Quasi-Trigonometric $r$-Matrices and Generalized Gaudin Models. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a68/
[1] Adams M. R., Harnad J., Hurtubise J., “Darboux coordinates and Liouville–Arnold integration in loop algebras”, Comm. Math. Phys., 155 (1993), 385–413, arXiv: hep-th/9210089 | DOI | MR | Zbl
[2] Adams M. R., Harnad J., Hurtubise J., “Darboux coordinates on coadjoint orbits of Lie algebras”, Lett. Math. Phys., 40 (1997), 41–57 | DOI | MR | Zbl
[3] Al'ber S. I., “Investigation of equations of Korteweg–de Vries type by the method of recurrence relations”, J. London Math. Soc., 19 (1979), 467–480 | DOI | MR
[4] Avan J., Talon M., “Rational and trigonometric constant nonantisymmetric $R$-matrices”, Phys. Lett. B, 241 (1990), 77–82 | DOI | MR
[5] Babelon O., Viallet C.-M., “Hamiltonian structures and Lax equations”, Phys. Lett. B, 237 (1990), 411–416 | DOI | MR
[6] Belavin A. A., Drinfel'd V.G., “Solutions of the classical Yang–Baxter equation for simple Lie algebras”, Funct. Anal. Appl., 16 (1982), 159–180 | DOI | MR
[7] Cavaglià A., Gromov N., Levkovich-Maslyuk F., “Separation of variables and scalar products at any rank”, J. High Energy Phys., 2019:9 (2019), 052, 28 pp., arXiv: 1907.03788 | DOI | MR
[8] Diener P., Dubrovin B., Algebraic-geometrical Darboux coordinates in $R$-matrix formalism, Preprint 88/94/FM, SISSA, 1994 http://preprints.sissa.it/xmlui/bitstream/handle/1963/3655/convert_SCAN-9409240.pdf?sequence=2&isAllowed=y
[9] Dubrovin B., Krichever I., Novikov S., “Integrable systems. I”, Dynamical Systems, IV, Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001, 177–332 | DOI | MR
[10] Dubrovin B., Skrypnyk T., “Separation of variables for linear Lax algebras and classical $r$-matrices”, J. Math. Phys., 59 (2018), 091405, 39 pp. | DOI | MR | Zbl
[11] Falqui G., Magri F., Pedroni M., “Bihamiltonian geometry and separation of variables for Toda lattices”, J. Nonlinear Math. Phys., 8 (2001), 118–127, arXiv: nlin.SI/0002008 | DOI | MR | Zbl
[12] Flaschka H., McLaughlin D. W., “Canonically conjugate variables for the Korteweg–de Vries equation and the Toda lattice with periodic boundary conditions”, Progr. Theoret. Phys., 55 (1976), 438–456 | DOI | MR | Zbl
[13] Freidel L., Maillet J. M., “Quadratic algebras and integrable systems”, Phys. Lett. B, 262 (1991), 278–284 | DOI | MR
[14] Kalnins E., Kuznetsov V., Miller Jr. W., Separation of variables and the XXZ Gaudin magnet, arXiv: hep-th/9412190 | MR
[15] Maillet J. M., Niccoli G., “On quantum separation of variables”, J. Math. Phys., 59 (2018), 091417, 47 pp., arXiv: 1807.11572 | DOI | MR | Zbl
[16] Ryan P., Volin D., “Separated variables and wave functions for rational $\mathfrak{gl}(N)$ spin chains in the companion twist frame”, J. Math. Phys., 60 (2019), 032701, 23 pp. | DOI | MR | Zbl
[17] Sklyanin E. K., On complete integrability of the Landau–Lifshitz equation, Preprint LOMI, No E-3-79, 1979 | MR
[18] Sklyanin E. K., “Separation of variables in the Gaudin model”, J. Sov. Math., 47 (1989), 2473–2488 | DOI | MR | Zbl
[19] Sklyanin E. K., “Separation of variables – new trends”, Progr. Theoret. Phys. Suppl., 118 (1995), 35–60, arXiv: solv-int/9504001 | DOI | MR | Zbl
[20] Skrypnik T., “Quasigraded Lie algebras, the Kostant–Adler scheme, and integrable hierarchies”, Theoret. and Math. Phys., 142 (2005), 329–345 | DOI | MR | Zbl
[21] Skrypnyk T., “Integrable quantum spin chains, non-skew symmetric $r$-matrices and quasigraded Lie algebras”, J. Geom. Phys., 57 (2006), 53–67 | DOI | MR | Zbl
[22] Skrypnyk T., “Generalized Gaudin systems in a magnetic field and non-skew-symmetric $r$-matrices”, J. Phys. A: Math. Theor., 40 (2007), 13337–13352 | DOI | MR | Zbl
[23] Skrypnyk T., “Lie algebras with triangular decompositions, non-skew-symmetric classical $r$-matrices and Gaudin-type integrable systems”, J. Geom. Phys., 60 (2010), 491–500 | DOI | MR | Zbl
[24] Skrypnyk T., “Infinite-dimensional Lie algebras, classical $r$-matrices, and Lax operators: two approaches”, J. Math. Phys., 54 (2013), 103507, 32 pp. | DOI | MR | Zbl
[25] Skrypnyk T., ““Many-poled” $r$-matrix Lie algebras, Lax operators, and integrable systems”, J. Math. Phys., 55 (2014), 083507, 19 pp. | DOI | MR | Zbl
[26] Skrypnyk T., “Reductions in finite-dimensional integrable systems and special points of classical $r$-matrices”, J. Math. Phys., 57 (2016), 123504, 38 pp. | DOI | MR | Zbl
[27] Skrypnyk T., “Classical $r$-matrices, “elliptic” BCS and Gaudin-type hamiltonians and spectral problem”, Nuclear Phys. B, 941 (2019), 225–248 | DOI | MR | Zbl
[28] Skrypnyk T., “Separation of variables, Lax-integrable systems and $\mathfrak{gl}(2)\otimes \mathfrak{gl}(2)$-valued classical $r$-matrices”, J. Geom. Phys., 155 (2020), 103733, 17 pp. | DOI | MR | Zbl
[29] Skrypnyk T., “Symmetric separation of variables for trigonometric integrable models”, Nuclear Phys. B, 957 (2020), 115101, 16 pp. | DOI | MR | Zbl
[30] Veselov A. P., Novikov S. P., “On Poisson brackets compatible with algebraic geometry and Korteweg–de Vries dynamics on the set of finite-zone potentials”, Sov. Math. Dokl., 26 (1982), 357–362 | MR