A New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For cubic pencils we define the notion of an involution curve. This is a curve which intersects each curve of the pencil in exactly one non-base point of the pencil. Involution curves can be used to construct integrable maps of the plane which leave invariant a cubic pencil.
Keywords: integrable map of the plane, pencil of cubic curves.
Mots-clés : Manin transformation, Bertini involution, invariant
@article{SIGMA_2021_17_a66,
     author = {Peter H. van der Kamp},
     title = {A {New} {Class} of {Integrable} {Maps} of the {Plane:} {Manin} {Transformations} with {Involution} {Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a66/}
}
TY  - JOUR
AU  - Peter H. van der Kamp
TI  - A New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a66/
LA  - en
ID  - SIGMA_2021_17_a66
ER  - 
%0 Journal Article
%A Peter H. van der Kamp
%T A New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a66/
%G en
%F SIGMA_2021_17_a66
Peter H. van der Kamp. A New Class of Integrable Maps of the Plane: Manin Transformations with Involution Curves. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a66/

[1] Bayle L., Beauville A., “Birational involutions of $P^2$”, Asian J. Math., 4 (2000), 11–17, arXiv: math.AG/9907028 | DOI | MR | Zbl

[2] Bertini E., “Ricerche sulle trasformazioni univoche involutorie nel piano”, Ann. Mat. Pura Appl., 8 (1877), 244–286 | DOI

[3] Caudrelier V., van der Kamp P. H., Zhang C., “Integrable boundary conditions for quad equations, open boundary reductions and integrable mappings”, Int. Math. Res. Not. (to appear) , arXiv: 2009.00412

[4] Diller J., Favre C., “Dynamics of bimeromorphic maps of surfaces”, Amer. J. Math., 123 (2001), 1135–1169 | DOI | MR | Zbl

[5] Duistermaat J. J., Discrete integrable systems. QRT maps and elliptic surfaces, Springer Monographs in Mathematics, Springer, New York, 2010 | DOI | MR | Zbl

[6] Hietarinta J., Joshi N., Nijhoff F. W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl

[7] Iatrou A., Roberts J. A.G., “Integrable mappings of the plane preserving biquadratic invariant curves. II”, Nonlinearity, 15 (2002), 459–489 | DOI | MR | Zbl

[8] Jogia D., Roberts J. A.G., Vivaldi F., “An algebraic geometric approach to integrable maps of the plane”, J. Phys. A: Math. Gen., 39 (2006), 1133–1149 | DOI | MR | Zbl

[9] AMS Translations Ser. 2, 59, Amer. Math. Soc. (AMS), Providence, RI, 1966, 82–110 | MR | MR | Zbl

[10] Maple, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario, 2021

[11] Moody E. I., “Notes on the Bertini involution”, Bull. Amer. Math. Soc., 49 (1943), 433–436 | DOI | MR | Zbl

[12] Papageorgiou V. G., Nijhoff F. W., Capel H. W., “Integrable mappings and nonlinear integrable lattice equations”, Phys. Lett. A, 147 (1990), 106–114 | DOI | MR

[13] Petrera M., Suris Yu.B., Wei K., Zander R., “Manin involutions for elliptic pencils and discrete integrable systems”, Math. Phys. Anal. Geom., 24 (2021), 6, 26 pp., arXiv: 2008.08308 | DOI | MR | Zbl

[14] Quispel G. R.W., Roberts J. A.G., Thompson C. J., “Integrable mappings and soliton equations”, Phys. Lett. A, 126 (1988), 419–421 | DOI | MR | Zbl

[15] Quispel G. R.W., Roberts J. A.G., Thompson C. J., “Integrable mappings and soliton equations. II”, Phys. D, 34 (1989), 183–192 | DOI | MR | Zbl

[16] Roberts J. A.G., Quispel G. R.W., “Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems”, Phys. Rep., 216 (1992), 63–177 | DOI | MR

[17] Tsuda T., “Integrable mappings via rational elliptic surfaces”, J. Phys. A: Math. Gen., 37 (2004), 2721–2730 | DOI | MR | Zbl

[18] van der Kamp P. H., McLaren D. I., Quispel G. R.W., “Generalised Manin transformations and QRT maps”, J. Computat. Dyn., 8 (2021), 183–211, arXiv: 1806.05340 | DOI | MR | Zbl

[19] van der Kamp P. H., Quispel G. R.W., “The staircase method: integrals for periodic reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 43 (2010), 465207, 34 pp., arXiv: 1005.2071 | DOI | MR | Zbl

[20] Veselov A. P., “Integrable mappings”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl