Positive Scalar Curvature on Spin Pseudomanifolds: the Fundamental Group and Secondary Invariants
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we continue the study of positive scalar curvature (psc) metrics on a depth-1 Thom–Mather stratified space $M_\Sigma$ with singular stratum $\beta M$ (a closed manifold of positive codimension) and associated link equal to $L$, a smooth compact manifold. We briefly call such spaces manifolds with $L$-fibered singularities. Under suitable spin assumptions we give necessary index-theoretic conditions for the existence of wedge metrics of positive scalar curvature. Assuming in addition that $L$ is a simply connected homogeneous space of positive scalar curvature, $L=G/H$, with the semisimple compact Lie group $G$ acting transitively on $L$ by isometries, we investigate when these necessary conditions are also sufficient. Our main result is that our conditions are indeed sufficient for large classes of examples, even when $M_\Sigma$ and $\beta M$ are not simply connected. We also investigate the space of such psc metrics and show that it often splits into many cobordism classes.
Keywords: positive scalar curvature, pseudomanifold, singularity, transfer, $K$-theory, index, rho-invariant.
Mots-clés : bordism
@article{SIGMA_2021_17_a61,
     author = {Boris Botvinnik and Paolo Piazza and Jonathan Rosenberg},
     title = {Positive {Scalar} {Curvature} on {Spin} {Pseudomanifolds:} the {Fundamental} {Group} and {Secondary} {Invariants}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a61/}
}
TY  - JOUR
AU  - Boris Botvinnik
AU  - Paolo Piazza
AU  - Jonathan Rosenberg
TI  - Positive Scalar Curvature on Spin Pseudomanifolds: the Fundamental Group and Secondary Invariants
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a61/
LA  - en
ID  - SIGMA_2021_17_a61
ER  - 
%0 Journal Article
%A Boris Botvinnik
%A Paolo Piazza
%A Jonathan Rosenberg
%T Positive Scalar Curvature on Spin Pseudomanifolds: the Fundamental Group and Secondary Invariants
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a61/
%G en
%F SIGMA_2021_17_a61
Boris Botvinnik; Paolo Piazza; Jonathan Rosenberg. Positive Scalar Curvature on Spin Pseudomanifolds: the Fundamental Group and Secondary Invariants. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a61/

[1] Albin P., Gell-Redman J., The index formula for families of Dirac type operators on pseudomanifolds, arXiv: 1712.08513

[2] Albin P., Gell-Redman J., “The index of Dirac operators on incomplete edge spaces”, SIGMA, 12 (2016), 089, 45 pp., arXiv: 1312.4241 | DOI | MR | Zbl

[3] Albin P., Gell-Redman J., Piazza P., Higher index theory for Dirac operators on wedge pseudomanifolds, in preparation

[4] Albin P., Leichtnam E., Mazzeo R., Piazza P., “The signature package on Witt spaces”, Ann. Sci. Éc. Norm. Supér. (4), 45 (2012), 241–310, arXiv: 1112.0989 | DOI | MR | Zbl

[5] Albin P., Piazza P., “Stratified surgery and $K$-theory invariants of the signature operator”, Ann. Sci. Éc. Norm. Supér. (4) (to appear) , arXiv: 1710.00934

[6] Azzali S., Wahl C., “Two-cocycle twists and Atiyah–Patodi–Singer index theory”, Math. Proc. Cambridge Philos. Soc., 167 (2019), 437–487, arXiv: 1312.6373 | DOI | MR | Zbl

[7] Baum P., Douglas R. G., Taylor M. E., Cycles and relative cycles in analytic $K$-homology, J. Differential Geom., 30 (1989), 761–804 | DOI | MR | Zbl

[8] Benameur M.-T., Roy I., “The Higson–Roe exact sequence and $\ell^2$ eta invariants”, J. Funct. Anal., 268 (2015), 974–1031, arXiv: 1409.2717 | DOI | MR | Zbl

[9] Bismut J.-M., Cheeger J., “$\eta$-invariants and their adiabatic limits”, J. Amer. Math. Soc., 2 (1989), 33–70 | DOI | MR | Zbl

[10] Botvinnik B., “Manifolds with singularities accepting a metric of positive scalar curvature”, Geom. Topol., 5 (2001), 683–718, arXiv: math.DG/9910177 | DOI | MR | Zbl

[11] Botvinnik B., Ebert J., Randal-Williams O., “Infinite loop spaces and positive scalar curvature”, Invent. Math., 209 (2017), 749–835, arXiv: 1411.7408 | DOI | MR | Zbl

[12] Botvinnik B., Gilkey P., “The eta invariant and metrics of positive scalar curvature”, Math. Ann., 302 (1995), 507–517 | DOI | MR | Zbl

[13] Botvinnik B., Gilkey P., Stolz S., “The Gromov–Lawson–Rosenberg conjecture for groups with periodic cohomology”, J. Differential Geom., 46 (1997), 374–405 | DOI | MR | Zbl

[14] Botvinnik B., Piazza P., Rosenberg J., “Positive scalar curvature on simply connected spin pseudomanifolds” (to appear) | DOI | MR

[15] Botvinnik B., Rosenberg J., Positive scalar curvature on manifolds with fibered singularities, arXiv: 1808.06007

[16] Botvinnik B., Walsh M. G., “Homotopy invariance of the space of metrics with positive scalar curvature on manifolds with singularities”, SIGMA, 17 (2021), 034, 27 pp., arXiv: 2005.03073 | DOI | MR | Zbl

[17] Buggisch L., The spectral flow theorems for families of twisted Dirac operators, Ph.D. Thesis, University of Münster, 2018 https://d-nb.info/1190724960/34 | Zbl

[18] Bunke U., “A $K$-theoretic relative index theorem and Callias-type Dirac operators”, Math. Ann., 303 (1995), 241–279 | DOI | MR | Zbl

[19] Debord C., Lescure J.-M., Rochon F., “Pseudodifferential operators on manifolds with fibred corners”, Ann. Inst. Fourier (Grenoble), 65 (2015), 1799–1880, arXiv: 1112.4575 | DOI | MR | Zbl

[20] Dwyer W., Schick T., Stolz S., “Remarks on a conjecture of Gromov and Lawson”, High-Dimensional Manifold Topology, World Sci. Publ., River Edge, NJ, 2003, 159–176, arXiv: math.GT/0208011 | DOI | MR | Zbl

[21] Ebert J., “The two definitions of the index difference”, Trans. Amer. Math. Soc., 369 (2017), 7469–7507, arXiv: 1308.4998 | DOI | MR | Zbl

[22] Ebert J., “Index theory in spaces of manifolds”, Math. Ann., 374 (2019), 931–962, arXiv: 1608.01701 | DOI | MR | Zbl

[23] Ebert J., Frenck G., “The Gromov–Lawson–Chernysh surgery theorem”, Bol. Soc. Mat. Mex., 27 (2021), 37, 43 pp., arXiv: 1807.06311 | DOI | MR | Zbl

[24] Ebert J., Randal-Williams O., “Infinite loop spaces and positive scalar curvature in the presence of a fundamental group”, Geom. Topol., 23 (2019), 1549–1610, arXiv: 1711.11363 | DOI | MR | Zbl

[25] Gromov M., Lawson Jr. H.B., “The classification of simply connected manifolds of positive scalar curvature”, Ann. of Math., 111 (1980), 423–434 | DOI | MR | Zbl

[26] Gromov M., Lawson Jr. H.B., “Positive scalar curvature and the Dirac operator on complete Riemannian manifolds”, Inst. Hautes Études Sci. Publ. Math., 58 (1983), 83–196 | DOI | MR | Zbl

[27] Joyce D., “A new construction of compact 8-manifolds with holonomy ${\rm Spin}(7)$”, J. Differential Geom., 53 (1999), 89–130, arXiv: math.DG/9910002 | DOI | MR | Zbl

[28] Kasparov G. G., “Equivariant $KK$-theory and the Novikov conjecture”, Invent. Math., 91 (1988), 147–201 | DOI | MR | Zbl

[29] Kasparov G. G., “$K$-theory, group $C^*$-algebras, and higher signatures (conspectus)”, Novikov Conjectures, Index Theorems and Rigidity (Oberwolfach, 1993), v. 1, London Math. Soc. Lecture Note Ser., 226, Cambridge University Press, Cambridge, 1995, 101–146 | DOI | MR | Zbl

[30] Kreck M., Stolz S., “Nonconnected moduli spaces of positive sectional curvature metrics”, J. Amer. Math. Soc., 6 (1993), 825–850 | DOI | MR | Zbl

[31] Lawson Jr. H.B., Michelsohn M.-L., Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[32] Leichtnam E., Piazza P., “Spectral sections and higher Atiyah–Patodi–Singer index theory on Galois coverings”, Geom. Funct. Anal., 8 (1998), 17–58 | DOI | MR | Zbl

[33] Leichtnam E., Piazza P., “On higher eta-invariants and metrics of positive scalar curvature”, $K$-Theory, 24 (2001), 341–359 | DOI | MR | Zbl

[34] Leichtnam E., Piazza P., “Dirac index classes and the noncommutative spectral flow”, J. Funct. Anal., 200 (2003), 348–400 | DOI | MR | Zbl

[35] Mazzeo R., “Elliptic theory of differential edge operators. I”, Comm. Partial Differential Equations, 16 (1991), 1615–1664 | DOI | MR | Zbl

[36] Piazza P., Schick T., “Bordism, rho-invariants and the Baum–Connes conjecture”, J. Noncommut. Geom., 1 (2007), 27–111, arXiv: math.KT/0407388 | DOI | MR | Zbl

[37] Piazza P., Schick T., “Groups with torsion, bordism and rho invariants”, Pacific J. Math., 232 (2007), 355–378, arXiv: math.GN/0604319 | DOI | MR | Zbl

[38] Piazza P., Schick T., “Rho-classes, index theory and Stolz' positive scalar curvature sequence”, J. Topol., 7 (2014), 965–1004, arXiv: 1210.6892 | DOI | MR | Zbl

[39] Piazza P., Vertman B., “Eta and rho invariants on manifolds with edges”, Ann. Inst. Fourier (Grenoble), 69 (2019), 1955–2035, arXiv: 1604.07420 | DOI | MR | Zbl

[40] Piazza P., Zenobi V. F., “Singular spaces, groupoids and metrics of positive scalar curvature”, J. Geom. Phys., 137 (2019), 87–123, arXiv: 1803.02697 | DOI | MR | Zbl

[41] Rosenberg J., “$C^\ast$-algebras, positive scalar curvature and the Novikov conjecture. II”, Geometric Methods in Operator Algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986, 341–374 | MR

[42] Rosenberg J., “$C^\ast$-algebras, positive scalar curvature, and the Novikov conjecture. III”, Topology, 25 (1986), 319–336 | DOI | MR | Zbl

[43] Schick T., “A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture”, Topology, 37 (1998), 1165–1168, arXiv: math.GT/0403063 | DOI | MR | Zbl

[44] Stolz S., Concordance classes of positive scalar curvature metrics https://www3.nd.edu/s̃tolz/preprint.html

[45] Stolz S., “Positive scalar curvature metrics – existence and classification questions”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 625–636 | DOI | MR | Zbl

[46] Stolz S., “Manifolds of positive scalar curvature”, Topology of High-Dimensional Manifolds (Trieste, 2001), v. 1, 2, ICTP Lect. Notes, 9, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2002, 661–709 | MR | Zbl

[47] Wahl C., “The Atiyah–Patodi–Singer index theorem for Dirac operators over $C^\ast$-algebras”, Asian J. Math., 17 (2013), 265–319, arXiv: 0901.0381 | DOI | MR

[48] Xie Z., Yu G., “A relative higher index theorem, diffeomorphisms and positive scalar curvature”, Adv. Math., 250 (2014), 35–73, arXiv: 1204.3664 | DOI | MR | Zbl

[49] Xie Z., Yu G., Zeidler R., On the range of the relative higher index and the higher rho-invariant for positive scalar curvature, arXiv: 1712.03722 | MR