@article{SIGMA_2021_17_a60,
author = {Boris Doubrov and Yoshinori Machida and Tohru Morimoto},
title = {Extrinsic {Geometry} and {Linear} {Differential} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a60/}
}
TY - JOUR AU - Boris Doubrov AU - Yoshinori Machida AU - Tohru Morimoto TI - Extrinsic Geometry and Linear Differential Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a60/ LA - en ID - SIGMA_2021_17_a60 ER -
Boris Doubrov; Yoshinori Machida; Tohru Morimoto. Extrinsic Geometry and Linear Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a60/
[1] Bourbaki N., Groupes et algébres de Lie, Chapitres I–III, Hermann, Paris, 1972 | MR
[2] Čap A., Slovák J., Parabolic geometries, v. I, Mathematical Surveys and Monographs, 154, Background and general theory, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[3] Cartan É., “Les sous-groupes des groupes continus de transformations”, Ann. Sci. École Norm. Sup. (3), 25 (1908), 57–194 | DOI | MR | Zbl
[4] Cartan É., “Les problèmes d'équivalence” (1936–1937), Séminaire de Mathématiques dit de Julia, 4, Talk No 4, 1–40 ; Oeuvres complètes, Part II, 2, Gauthiers–Villars, Paris, 1953, 1311–1334 | MR
[5] Cartan É., La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile, Jacques Gabay, Gauthiers-Villars, 1937 | MR
[6] Doubrov B., Komrakov B., “Classification of homogeneous submanifolds in homogeneous spaces”, Lobachevskii J. Math., 3 (1999), 19–38 | MR | Zbl
[7] Doubrov B., Zelenko I., “Geometry of curves in generalized flag varieties”, Transform. Groups, 18 (2013), 361–383 | DOI | MR | Zbl
[8] Fels M., Olver P. J., “Moving coframes. II. Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[9] Fulton W., Young tableaux with applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[10] Hochschild G., Serre J. P., “Cohomology of Lie algebras”, Ann. of Math., 57 (1953), 591–603 | DOI | MR | Zbl
[11] Humphreys J. E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York – Berlin, 1972 | DOI | MR | Zbl
[12] Hwang J. M., Yamaguchi K., “Characterization of Hermitian symmetric spaces by fundamental forms”, Duke Math. J., 120 (2003), 621–634, arXiv: math.DG/0307105 | DOI | MR | Zbl
[13] Ishikawa G., Machida Y., Takahashi M., “Singularities of tangent surfaces in Cartan's split $G_2$-geometry”, Asian J. Math., 20 (2016), 353–382 | DOI | MR | Zbl
[14] Jensen G. R., Higher order contact of submanifolds of homogeneous spaces, Lecture Notes in Math., 610, Springer-Verlag, Berlin – New York, 1977 | DOI | MR | Zbl
[15] Kolář I., “On the invariant method in differential geometry of submanifolds”, Czechoslovak Math. J., 27 (1977), 96–113 | DOI | MR | Zbl
[16] Kostant B., “Lie algebra cohomology and the generalized Borel–Weil theorem”, Ann. of Math., 74 (1961), 329–387 | DOI | MR | Zbl
[17] Landsberg J. M., Robles C., “Fubini–Griffiths–Harris rigidity and Lie algebra cohomology”, Asian J. Math., 16 (2012), 561–586, arXiv: 0707.3410 | DOI | MR | Zbl
[18] Ackerman M., Hermann R., Sophus Lie's 1884 differential invariant paper, Math Sci Press, Brookline, Mass., 1975 | DOI | MR | MR
[19] Matsumoto K., Sasaki T., Yoshida M., “Recent progress of Gauss–Schwarz theory and related geometric structures”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 47 (1993), 283–381 | DOI | MR | Zbl
[20] Morimoto T., “Sur le problème d'équivalence des structures géométriques”, Japan. J. Math. (N.S.), 9 (1983), 293–372 | DOI | MR | Zbl
[21] Morimoto T., “Transitive Lie algebras admitting differential systems”, Hokkaido Math. J., 17 (1988), 45–81 | DOI | MR | Zbl
[22] Morimoto T., “Geometric structures on filtered manifolds”, Hokkaido Math. J., 22 (1993), 263–347 | DOI | MR | Zbl
[23] Morimoto T., “Lie algebras, geometric structures and differential equations on filtered manifolds”, Lie Groups, Geometric Structures and Differential Equations – One Hundred Years After Sophus Lie (Kyoto/Nara, 1999), Adv. Stud. Pure Math., 37, Math. Soc. Japan, Tokyo, 2002, 205–252 | DOI | MR | Zbl
[24] Morimoto T., “Differential equations associated to a representation of a Lie algebra from the viewpoint of nilpotent analysis”, Developments of Cartan Geometry and Related Mathematical Problems, RIMS Kōkyūroku, 1502, Kyoto University, 2006, 238–250 | MR
[25] Ovsienko V., Tabachnikov S., Projective differential geometry old and new. From the Schwarzian derivative to the cohomology of diffeomorphism groups, Cambridge Tracts in Mathematics, 165, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[26] Robles C., “The adjoint variety of ${\rm SL}_{m+1}\mathbb C$ is rigid to order three”, Differential Geom. Appl., 26 (2008), 683–696, arXiv: math.DG/0608471 | DOI | MR | Zbl
[27] Sasaki T., Projective differential geometry and linear homogeneous differential equations, Rokko Lectures in Mathematics, 1999 | MR
[28] Sasaki T., Yamaguchi K., Yoshida M., “On the rigidity of differential systems modelled on Hermitian symmetric spaces and disproofs of a conjecture concerning modular interpretations of configuration spaces”, CR-Geometry and Overdetermined Systems (Osaka, 1994), Adv. Stud. Pure Math., 25, Math. Soc. Japan, Tokyo, 1997, 318–354 | DOI | MR | Zbl
[29] Sasaki T., Yoshida M., “Linear differential equations modeled after hyperquadrics”, Tohoku Math. J., 41 (1989), 321–348 | DOI | MR | Zbl
[30] Se-Ashi Y., “On differential invariants of integrable finite type linear differential equations”, Hokkaido Math. J., 17 (1988), 151–195 | DOI | MR | Zbl
[31] Se-Ashi Y., “A geometric construction of Laguerre–Forsyth's canonical forms of linear ordinary differential equations”, Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993, 265–297 | DOI | MR | Zbl
[32] Singer I. M., Sternberg S., “The infinite groups of Lie and Cartan. I The transitive groups”, J. Anal. Math., 15 (1965), 1–114 | DOI | MR | Zbl
[33] Sternberg S., Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964 | MR | Zbl
[34] Sulanke R., On É., “Cartan's method of moving frames”, Differential Geometry (Budapest, 1979), Colloq. Math. Soc. János Bolyai, 31, North-Holland, Amsterdam, 1982, 681–704 | MR
[35] Tanaka N., “On differential systems, graded Lie algebras and pseudogroups”, J. Math. Kyoto Univ., 10 (1970), 1–82 | DOI | MR | Zbl
[36] Tanaka N., “On the equivalence problems associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | DOI | MR | Zbl
[37] Wilczynski E. J., Projective differential geometry of curves and ruled surfaces, Teubner, Leipzig, 1906 | MR | Zbl
[38] Wilczynski E. J., “Projective differential geometry of curved surfaces”, Trans. Amer. Math. Soc., 8 (1907), 233–260 | DOI | MR | Zbl