@article{SIGMA_2021_17_a6,
author = {Ilija Buri\'c},
title = {Harmonic {Analysis} in $d${-Dimensional} {Superconformal} {Field} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a6/}
}
Ilija Burić. Harmonic Analysis in $d$-Dimensional Superconformal Field Theory. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a6/
[1] Alday L. F., “Large spin perturbation theory for conformal field theories”, Phys. Rev. Lett., 119 (2017), 111601, 6 pp., arXiv: 1611.01500 | DOI
[2] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl
[3] Bissi A., Łukowski T., “Revisiting $\mathcal N=4$ superconformal blocks”, J. High Energy Phys., 2016:2 (2016), 115, 23 pp., arXiv: 1508.02391 | DOI | MR | Zbl
[4] Blattner R. J., “Induced and produced representations of Lie algebras”, Trans. Amer. Math. Soc., 144 (1969), 457–474 | DOI | MR
[5] Bobev N., El-Showk S., Mazáč D., Paulos M. F., “Bootstrapping SCFTs with four supercharges”, J. High Energy Phys., 2015:8 (2015), 142, 53 pp., arXiv: 1503.02081 | DOI | MR
[6] Bobev N., Lauria E., Mazáč D., “Superconformal blocks for SCFTs with eight supercharges”, J. High Energy Phys., 2017:7 (2017), 061, 25 pp., arXiv: 1705.08594 | DOI | MR
[7] Burić I., Isachenkov M., Schomerus V., “Conformal group theory of tensor structures”, J. High Energy Phys., 2020:10 (2020), 004, 39 pp., arXiv: 1910.08099 | DOI
[8] Burić I., Schomerus V., Sobko E., “Superconformal blocks: general theory”, J. High Energy Phys., 2020:1 (2020), 159, 40 pp., arXiv: 1904.04852 | DOI | MR | Zbl
[9] Burić I., Schomerus V., Sobko E., “The superconformal Xing equation”, J. High Energy Phys., 2020:10 (2020), 147, 44 pp., arXiv: 2005.13547 | DOI
[10] Burić I., Schomerus V., Sobko E., Crossing symmetry for long multiplets in 4D $\mathcal{N}=1$ SCFTs, arXiv: 2011.14116
[11] Caron-Huot S., “Analyticity in spin in conformal theories”, J. High Energy Phys., 2017:9 (2017), 078, 44 pp., arXiv: 1703.00278 | DOI | MR
[12] Castedo Echeverri A., Elkhidir E., Karateev D., Serone M., “Deconstructing conformal blocks in 4D CFT”, J. High Energy Phys., 2015:8 (2015), 101, 34 pp., arXiv: 1505.03750 | DOI | MR | Zbl
[13] Castedo Echeverri A., Elkhidir E., Karateev D., Serone M., “Seed conformal blocks in 4D CFT”, J. High Energy Phys., 2016:2 (2016), 183, 35 pp., arXiv: 1601.05325 | DOI | MR | Zbl
[14] Chang C.-M., Lin Y.-H., “Carving out the end of the world or (superconformal bootstrap in six dimensions)”, J. High Energy Phys., 2017:8 (2017), 128, 52 pp., arXiv: 1705.05392 | DOI | MR
[15] Cornagliotto M., Lemos M., Schomerus V., “Long multiplet bootstrap”, J. High Energy Phys., 2017:10 (2017), 119, 44 pp., arXiv: 1702.05101 | DOI | MR | Zbl
[16] Costa M. S., Hansen T., Penedones J., Trevisani E., “Projectors and seed conformal blocks for traceless mixed-symmetry tensors”, J. High Energy Phys., 2016:7 (2016), 018, 48 pp., arXiv: 1603.05551 | DOI | MR
[17] Costa M. S., Penedones J., Poland D., Rychkov S., “Spinning conformal correlators”, J. High Energy Phys., 2011:11 (2011), 071, 45 pp., arXiv: 1107.3554 | DOI | MR
[18] Costa M. S., Penedones J., Poland D., Rychkov S., “Spinning conformal blocks”, J. High Energy Phys., 2011:11 (2011), 154, 28 pp., arXiv: 1109.6321 | DOI | MR | Zbl
[19] Cuomo G. F., Karateev D., Kravchuk P., “General bootstrap equations in 4D CFTs”, J. High Energy Phys., 2018:1 (2018), 130, 56 pp., arXiv: 1705.05401 | DOI | MR | Zbl
[20] Dobrev V. K., Mack G., Petkova V. B., Petrova S. G., Todorov I. T., Harmonic analysis on the $n$-dimensional Lorentz group and its application to conformal quantum field theory, Lecture Notes in Phys., 63, Springer, Berlin, 1977 | DOI | Zbl
[21] Dolan F. A., Gallot L., Sokatchev E., “On four-point functions of ${1\over2}$-BPS operators in general dimensions”, J. High Energy Phys., 2004:9 (2004), 056, 76 pp., arXiv: hep-th/0405180 | DOI | MR
[22] Dolan F. A., Osborn H., “Conformal four point functions and the operator product expansion”, Nuclear Phys. B, 599 (2001), 459–496, arXiv: hep-th/0011040 | DOI | MR | Zbl
[23] Dolan F. A., Osborn H., “Conformal partial waves and the operator product expansion”, Nuclear Phys. B, 678 (2004), 491–507, arXiv: hep-th/0309180 | DOI | MR | Zbl
[24] Dolan F. A., Osborn H., Conformal partial waves: further mathematical results, arXiv: 1108.6194
[25] Doobary R., Heslop P., “Superconformal partial waves in Grassmannian field theories”, J. High Energy Phys., 2015:12 (2015), 159, 57 pp., arXiv: 1508.03611 | DOI | MR | Zbl
[26] Dymarsky A., Kos F., Kravchuk P., Poland D., Simmons-Duffin D., “The 3d stress-tensor bootstrap”, J. High Energy Phys., 2018:2 (2018), 164, 48 pp., arXiv: 1708.05718 | DOI | Zbl
[27] Dymarsky A., Penedones J., Trevisani E., Vichi A., “Charting the space of 3D CFTs with a continuous global symmetry”, J. High Energy Phys., 2019:5 (2019), 098, 64 pp., arXiv: 1705.04278 | DOI | MR
[28] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A., “Solving the 3D Ising model with the conformal bootstrap”, Phys. Rev. D, 86 (2012), 025022, 17 pp., arXiv: 1203.6064 | DOI | MR
[29] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A., “Solving the 3d Ising model with the conformal bootstrap II $c$-minimization and precise critical exponents”, J. Stat. Phys., 157 (2014), 869–914, arXiv: 1403.4545 | DOI | MR | Zbl
[30] Erramilli R. S., Iliesiu L. V., Kravchuk P., “Recursion relation for general 3d blocks”, J. High Energy Phys., 2019:12 (2019), 116, 63 pp., arXiv: 1907.11247 | DOI | MR | Zbl
[31] Ferrara S., Grillo A. F., Gatto R., “Tensor representations of conformal algebra and conformally covariant operator product expansion”, Ann. Physics, 76 (1973), 161–188 | DOI | MR
[32] Fitzpatrick A. L., Kaplan J., Khandker Z. U., Li D., Poland D., Simmons-Duffin D., “Covariant approaches to superconformal blocks”, J. High Energy Phys., 2014:8 (2014), 129, 30 pp., arXiv: 1402.1167 | DOI
[33] Fitzpatrick A. L., Kaplan J., Poland D., Simmons-Duffin D., “The analytic bootstrap and AdS superhorizon locality”, J. High Energy Phys., 2013:12 (2013), 004, 35 pp., arXiv: 1212.3616 | DOI | MR | Zbl
[34] Fortin J.-F., Ma W.-J., Prilepina V., Skiba W., Efficient rules for all conformal blocks, arXiv: 2002.09007
[35] Gimenez-Grau A., Liendo P., “Bootstrapping line defects in $\mathcal N=2$ theories”, J. High Energy Phys., 2020:3 (2020), 121, 44 pp., arXiv: 1907.04345 | DOI | MR | Zbl
[36] Gimenez-Grau A., Liendo P., Bootstrapping Coulomb and Higgs branch operators, arXiv: 2006.01847
[37] Götz G., Quella T., Schomerus V., “The WZNW model on $\rm PSU(1,1|2)$”, J. High Energy Phys., 2007:3 (2007), 003, 48 pp., arXiv: hep-th/0610070 | DOI | MR
[38] Hogervorst M., Rychkov S., “Radial coordinates for conformal blocks”, Phys. Rev. D, 87 (2013), 106004, 15 pp., arXiv: 1303.1111 | DOI
[39] Isachenkov M., Liendo P., Linke Y., Schomerus V., “Calogero–Sutherland approach to defect blocks”, J. High Energy Phys., 2018:10 (2018), 204, 44 pp., arXiv: 1806.09703 | DOI | MR | Zbl
[40] Isachenkov M., Schomerus V., “Superintegrability of $d$-dimensional conformal blocks”, Phys. Rev. Lett., 117 (2016), 071602, 5 pp., arXiv: 1602.01858 | DOI | MR
[41] Isachenkov M., Schomerus V., “Integrability of conformal blocks. Part I Calogero–Sutherland scattering theory”, J. High Energy Phys., 2018:7 (2018), 180, 66 pp., arXiv: 1711.06609 | DOI | MR | Zbl
[42] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl
[43] Karateev D., Kravchuk P., Simmons-Duffin D., “Weight shifting operators and conformal blocks”, J. High Energy Phys., 2018:2 (2018), 081, 81 pp., arXiv: 1706.07813 | DOI | MR
[44] Khandker Z. U., Li D., Poland D., Simmons-Duffin D., “$\mathcal N = 1$ superconformal blocks for general scalar operators”, J. High Energy Phys., 2014:8 (2014), 049, 28 pp., arXiv: 1404.5300 | DOI | MR
[45] Komargodski Z., Zhiboedov A., “Convexity and liberation at large spin”, J. High Energy Phys., 2013:11 (2013), 140, 50 pp., arXiv: 1212.4103 | DOI
[46] Kos F., Oh J., “2d small $\mathcal N=4$ long-multiplet superconformal block”, J. High Energy Phys., 2019:2 (2019), 001, 39 pp., arXiv: 1810.10029 | DOI | MR
[47] Kos F., Poland D., Simmons-Duffin D., Vichi A., “Precision islands in the Ising and $O(N)$ models”, J. High Energy Phys., 2016:8 (2016), 036, 16 pp., arXiv: 1603.04436 | DOI | MR
[48] Kostant B., “Graded manifolds, graded Lie theory, and prequantization”, Differential Geometrical Methods in Mathematical Physics, Proc. Sympos. (Univ. Bonn, Bonn, 1975), Lecture Notes in Math., 570, Springer, Berlin–Heidelberg, 1977, 177–306 | DOI | MR
[49] Kravchuk P., Simmons-Duffin D., “Counting conformal correlators”, J. High Energy Phys., 2018:2 (2018), 096, 40 pp., arXiv: 1612.08987 | DOI | MR
[50] Lemos M., Liendo P., “Bootstrapping $\mathcal N=2$ chiral correlators”, J. High Energy Phys., 2016:1 (2016), 025, 39 pp., arXiv: 1510.03866 | DOI | MR
[51] Lemos M., Liendo P., Meneghelli C., Mitev V., “Bootstrapping $\mathcal N=3$ superconformal theories”, J. High Energy Phys., 2017:4 (2017), 032, 60 pp., arXiv: 1612.01536 | DOI | MR
[52] Li Z., Su N., “The most general $4\mathcal D$ $\mathcal N=1$ superconformal blocks for scalar operators”, J. High Energy Phys., 2016:5 (2016), 163, 28 pp., arXiv: 1602.07097 | DOI | MR
[53] Liendo P., Meneghelli C., “Bootstrap equations for $\mathcal N=4$ SYM with defects”, J. High Energy Phys., 2017:1 (2017), 122, 47 pp., arXiv: 1608.05126 | DOI | MR | Zbl
[54] Liendo P., Meneghelli C., Mitev V., “Bootstrapping the half-BPS line defect”, J. High Energy Phys., 2018:10 (2018), 077, 49 pp., arXiv: 1806.01862 | DOI | MR
[55] Mack G., “Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory”, Comm. Math. Phys., 53 (1977), 155–184 | DOI | MR
[56] Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, 257, 2nd ed., Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[57] Messiah A., Quantum mechanics, North-Holland Publishing Company, Amsterdam, 1962 | Zbl
[58] Nirschl M., Osborn H., “Superconformal Ward identities and their solution,”, Nuclear Phys. B, 711 (2005), 409–479, arXiv: hep-th/0407060 | DOI | MR | Zbl
[59] Osborn H., Petkou A., “Implications of conformal invariance in field theories for general dimensions”, Ann. Physics, 231 (1994), 311–362, arXiv: hep-th/9307010 | DOI | MR | Zbl
[60] Penedones J., Trevisani E., Yamazaki M., “Recursion relations for conformal blocks”, J. High Energy Phys., 2016:9 (2016), 070, 50 pp., arXiv: 1509.00428 | DOI | MR
[61] Poland D., Simmons-Duffin D., “Bounds on 4D conformal and superconformal field theories”, J. High Energy Phys., 2011:5 (2011), 017, 47 pp., arXiv: 1009.2087 | DOI | MR | Zbl
[62] Polyakov A. M., “Non-Hamiltonian approach to conformal quantum field theory”, Sov. Phys. JETP, 19 (1974), 10–18 | MR
[63] Quella T., Schomerus V., “Free fermion resolution of supergroup WZNW models”, J. High Energy Phys., 2007:9 (2007), 085, 51 pp., arXiv: 0706.0744 | DOI | MR
[64] Ramírez I. A., “Towards general super Casimir equations for $4D$ $\mathcal N=1$ {SCFT}s”, J. High Energy Phys., 2019:3 (2019), 047, 45 pp., arXiv: 1808.05455 | DOI
[65] Rattazzi R., Rychkov V. S., Tonni E., Vichi A., “Bounding scalar operator dimensions in 4D CFT”, J. High Energy Phys., 2008:12 (2008), 031, 49 pp., arXiv: 0807.0004 | DOI | MR | Zbl
[66] Saleur H., Schomerus V., “On the ${\rm SU}(2|1)$ WZNW model and its statistical mechanics applications”, Nuclear Phys. B, 775 (2007), 312–340, arXiv: hep-th/0611147 | DOI | MR | Zbl
[67] Scheunert M., Nahm W., Rittenberg V., “Irreducible representations of the ${\rm osp}(2,1)$ and ${\rm spl}(2,1)$ graded Lie algebras”, J. Math. Phys., 18 (1977), 155–162 | DOI | MR | Zbl
[68] Schomerus V., Saleur H., “The $\rm GL(1|1)$ WZW-model: from supergeometry to logarithmic CFT”, Nuclear Phys. B, 734 (2006), 221–245, arXiv: hep-th/0510032 | DOI | MR | Zbl
[69] Schomerus V., Sobko E., “From spinning conformal blocks to matrix Calogero–Sutherland models”, J. High Energy Phys., 2018:4 (2018), 052, 29 pp., arXiv: 1711.02022 | DOI | MR
[70] Schomerus V., Sobko E., Isachenkov M., “Harmony of spinning conformal blocks”, J. High Energy Phys., 2017:3 (2017), 085, 23 pp., arXiv: 1612.02479 | DOI | MR
[71] Simmons-Duffin D., “Projectors, shadows, and conformal blocks”, J. High Energy Phys., 2014:4 (2014), 146, 36 pp., arXiv: 1204.3894 | DOI | MR | Zbl
[72] Stokman J., Reshetikhin N., $N$-point spherical functions and asymptotic boundary KZB equations, arXiv: 2002.02251
[73] Tarasov V., Varchenko A., “Solutions to the quantized Knizhnik–Zamolodchikov equation and the Bethe-ansatz”, Group Theoretical Methods in Physics (Toyonaka, 1994), World Sci. Publ., River Edge, NJ, 1995, 473–478, arXiv: hep-th/9411181 | MR | Zbl
[74] Varchenko A., Tarasov V., “Jackson integral representations of solutions of the quantized Knizhnik–Zamolodchikov equation”, St. Petersburg Math. J., 6 (1995), 275–313, arXiv: hep-th/9311040 | MR