Harmonic Analysis in $d$-Dimensional Superconformal Field Theory
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Superconformal blocks and crossing symmetry equations are among central ingredients in any superconformal field theory. We review the approach to these objects rooted in harmonic analysis on the superconformal group that was put forward in [J. High Energy Phys. 2020 (2020), no. 1, 159, 40 pages, arXiv:1904.04852] and [J. High Energy Phys. 2020 (2020), no. 10, 147, 44 pages, arXiv:2005.13547]. After lifting conformal four-point functions to functions on the superconformal group, we explain how to obtain compact expressions for crossing constraints and Casimir equations. The later allow to write superconformal blocks as finite sums of spinning bosonic blocks.
Keywords: conformal blocks, crossing equations, Calogero–Sutherland models.
@article{SIGMA_2021_17_a6,
     author = {Ilija Buri\'c},
     title = {Harmonic {Analysis} in $d${-Dimensional} {Superconformal} {Field} {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a6/}
}
TY  - JOUR
AU  - Ilija Burić
TI  - Harmonic Analysis in $d$-Dimensional Superconformal Field Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a6/
LA  - en
ID  - SIGMA_2021_17_a6
ER  - 
%0 Journal Article
%A Ilija Burić
%T Harmonic Analysis in $d$-Dimensional Superconformal Field Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a6/
%G en
%F SIGMA_2021_17_a6
Ilija Burić. Harmonic Analysis in $d$-Dimensional Superconformal Field Theory. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a6/

[1] Alday L. F., “Large spin perturbation theory for conformal field theories”, Phys. Rev. Lett., 119 (2017), 111601, 6 pp., arXiv: 1611.01500 | DOI

[2] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl

[3] Bissi A., Łukowski T., “Revisiting $\mathcal N=4$ superconformal blocks”, J. High Energy Phys., 2016:2 (2016), 115, 23 pp., arXiv: 1508.02391 | DOI | MR | Zbl

[4] Blattner R. J., “Induced and produced representations of Lie algebras”, Trans. Amer. Math. Soc., 144 (1969), 457–474 | DOI | MR

[5] Bobev N., El-Showk S., Mazáč D., Paulos M. F., “Bootstrapping SCFTs with four supercharges”, J. High Energy Phys., 2015:8 (2015), 142, 53 pp., arXiv: 1503.02081 | DOI | MR

[6] Bobev N., Lauria E., Mazáč D., “Superconformal blocks for SCFTs with eight supercharges”, J. High Energy Phys., 2017:7 (2017), 061, 25 pp., arXiv: 1705.08594 | DOI | MR

[7] Burić I., Isachenkov M., Schomerus V., “Conformal group theory of tensor structures”, J. High Energy Phys., 2020:10 (2020), 004, 39 pp., arXiv: 1910.08099 | DOI

[8] Burić I., Schomerus V., Sobko E., “Superconformal blocks: general theory”, J. High Energy Phys., 2020:1 (2020), 159, 40 pp., arXiv: 1904.04852 | DOI | MR | Zbl

[9] Burić I., Schomerus V., Sobko E., “The superconformal Xing equation”, J. High Energy Phys., 2020:10 (2020), 147, 44 pp., arXiv: 2005.13547 | DOI

[10] Burić I., Schomerus V., Sobko E., Crossing symmetry for long multiplets in 4D $\mathcal{N}=1$ SCFTs, arXiv: 2011.14116

[11] Caron-Huot S., “Analyticity in spin in conformal theories”, J. High Energy Phys., 2017:9 (2017), 078, 44 pp., arXiv: 1703.00278 | DOI | MR

[12] Castedo Echeverri A., Elkhidir E., Karateev D., Serone M., “Deconstructing conformal blocks in 4D CFT”, J. High Energy Phys., 2015:8 (2015), 101, 34 pp., arXiv: 1505.03750 | DOI | MR | Zbl

[13] Castedo Echeverri A., Elkhidir E., Karateev D., Serone M., “Seed conformal blocks in 4D CFT”, J. High Energy Phys., 2016:2 (2016), 183, 35 pp., arXiv: 1601.05325 | DOI | MR | Zbl

[14] Chang C.-M., Lin Y.-H., “Carving out the end of the world or (superconformal bootstrap in six dimensions)”, J. High Energy Phys., 2017:8 (2017), 128, 52 pp., arXiv: 1705.05392 | DOI | MR

[15] Cornagliotto M., Lemos M., Schomerus V., “Long multiplet bootstrap”, J. High Energy Phys., 2017:10 (2017), 119, 44 pp., arXiv: 1702.05101 | DOI | MR | Zbl

[16] Costa M. S., Hansen T., Penedones J., Trevisani E., “Projectors and seed conformal blocks for traceless mixed-symmetry tensors”, J. High Energy Phys., 2016:7 (2016), 018, 48 pp., arXiv: 1603.05551 | DOI | MR

[17] Costa M. S., Penedones J., Poland D., Rychkov S., “Spinning conformal correlators”, J. High Energy Phys., 2011:11 (2011), 071, 45 pp., arXiv: 1107.3554 | DOI | MR

[18] Costa M. S., Penedones J., Poland D., Rychkov S., “Spinning conformal blocks”, J. High Energy Phys., 2011:11 (2011), 154, 28 pp., arXiv: 1109.6321 | DOI | MR | Zbl

[19] Cuomo G. F., Karateev D., Kravchuk P., “General bootstrap equations in 4D CFTs”, J. High Energy Phys., 2018:1 (2018), 130, 56 pp., arXiv: 1705.05401 | DOI | MR | Zbl

[20] Dobrev V. K., Mack G., Petkova V. B., Petrova S. G., Todorov I. T., Harmonic analysis on the $n$-dimensional Lorentz group and its application to conformal quantum field theory, Lecture Notes in Phys., 63, Springer, Berlin, 1977 | DOI | Zbl

[21] Dolan F. A., Gallot L., Sokatchev E., “On four-point functions of ${1\over2}$-BPS operators in general dimensions”, J. High Energy Phys., 2004:9 (2004), 056, 76 pp., arXiv: hep-th/0405180 | DOI | MR

[22] Dolan F. A., Osborn H., “Conformal four point functions and the operator product expansion”, Nuclear Phys. B, 599 (2001), 459–496, arXiv: hep-th/0011040 | DOI | MR | Zbl

[23] Dolan F. A., Osborn H., “Conformal partial waves and the operator product expansion”, Nuclear Phys. B, 678 (2004), 491–507, arXiv: hep-th/0309180 | DOI | MR | Zbl

[24] Dolan F. A., Osborn H., Conformal partial waves: further mathematical results, arXiv: 1108.6194

[25] Doobary R., Heslop P., “Superconformal partial waves in Grassmannian field theories”, J. High Energy Phys., 2015:12 (2015), 159, 57 pp., arXiv: 1508.03611 | DOI | MR | Zbl

[26] Dymarsky A., Kos F., Kravchuk P., Poland D., Simmons-Duffin D., “The 3d stress-tensor bootstrap”, J. High Energy Phys., 2018:2 (2018), 164, 48 pp., arXiv: 1708.05718 | DOI | Zbl

[27] Dymarsky A., Penedones J., Trevisani E., Vichi A., “Charting the space of 3D CFTs with a continuous global symmetry”, J. High Energy Phys., 2019:5 (2019), 098, 64 pp., arXiv: 1705.04278 | DOI | MR

[28] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A., “Solving the 3D Ising model with the conformal bootstrap”, Phys. Rev. D, 86 (2012), 025022, 17 pp., arXiv: 1203.6064 | DOI | MR

[29] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D., Vichi A., “Solving the 3d Ising model with the conformal bootstrap II $c$-minimization and precise critical exponents”, J. Stat. Phys., 157 (2014), 869–914, arXiv: 1403.4545 | DOI | MR | Zbl

[30] Erramilli R. S., Iliesiu L. V., Kravchuk P., “Recursion relation for general 3d blocks”, J. High Energy Phys., 2019:12 (2019), 116, 63 pp., arXiv: 1907.11247 | DOI | MR | Zbl

[31] Ferrara S., Grillo A. F., Gatto R., “Tensor representations of conformal algebra and conformally covariant operator product expansion”, Ann. Physics, 76 (1973), 161–188 | DOI | MR

[32] Fitzpatrick A. L., Kaplan J., Khandker Z. U., Li D., Poland D., Simmons-Duffin D., “Covariant approaches to superconformal blocks”, J. High Energy Phys., 2014:8 (2014), 129, 30 pp., arXiv: 1402.1167 | DOI

[33] Fitzpatrick A. L., Kaplan J., Poland D., Simmons-Duffin D., “The analytic bootstrap and AdS superhorizon locality”, J. High Energy Phys., 2013:12 (2013), 004, 35 pp., arXiv: 1212.3616 | DOI | MR | Zbl

[34] Fortin J.-F., Ma W.-J., Prilepina V., Skiba W., Efficient rules for all conformal blocks, arXiv: 2002.09007

[35] Gimenez-Grau A., Liendo P., “Bootstrapping line defects in $\mathcal N=2$ theories”, J. High Energy Phys., 2020:3 (2020), 121, 44 pp., arXiv: 1907.04345 | DOI | MR | Zbl

[36] Gimenez-Grau A., Liendo P., Bootstrapping Coulomb and Higgs branch operators, arXiv: 2006.01847

[37] Götz G., Quella T., Schomerus V., “The WZNW model on $\rm PSU(1,1|2)$”, J. High Energy Phys., 2007:3 (2007), 003, 48 pp., arXiv: hep-th/0610070 | DOI | MR

[38] Hogervorst M., Rychkov S., “Radial coordinates for conformal blocks”, Phys. Rev. D, 87 (2013), 106004, 15 pp., arXiv: 1303.1111 | DOI

[39] Isachenkov M., Liendo P., Linke Y., Schomerus V., “Calogero–Sutherland approach to defect blocks”, J. High Energy Phys., 2018:10 (2018), 204, 44 pp., arXiv: 1806.09703 | DOI | MR | Zbl

[40] Isachenkov M., Schomerus V., “Superintegrability of $d$-dimensional conformal blocks”, Phys. Rev. Lett., 117 (2016), 071602, 5 pp., arXiv: 1602.01858 | DOI | MR

[41] Isachenkov M., Schomerus V., “Integrability of conformal blocks. Part I Calogero–Sutherland scattering theory”, J. High Energy Phys., 2018:7 (2018), 180, 66 pp., arXiv: 1711.06609 | DOI | MR | Zbl

[42] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl

[43] Karateev D., Kravchuk P., Simmons-Duffin D., “Weight shifting operators and conformal blocks”, J. High Energy Phys., 2018:2 (2018), 081, 81 pp., arXiv: 1706.07813 | DOI | MR

[44] Khandker Z. U., Li D., Poland D., Simmons-Duffin D., “$\mathcal N = 1$ superconformal blocks for general scalar operators”, J. High Energy Phys., 2014:8 (2014), 049, 28 pp., arXiv: 1404.5300 | DOI | MR

[45] Komargodski Z., Zhiboedov A., “Convexity and liberation at large spin”, J. High Energy Phys., 2013:11 (2013), 140, 50 pp., arXiv: 1212.4103 | DOI

[46] Kos F., Oh J., “2d small $\mathcal N=4$ long-multiplet superconformal block”, J. High Energy Phys., 2019:2 (2019), 001, 39 pp., arXiv: 1810.10029 | DOI | MR

[47] Kos F., Poland D., Simmons-Duffin D., Vichi A., “Precision islands in the Ising and $O(N)$ models”, J. High Energy Phys., 2016:8 (2016), 036, 16 pp., arXiv: 1603.04436 | DOI | MR

[48] Kostant B., “Graded manifolds, graded Lie theory, and prequantization”, Differential Geometrical Methods in Mathematical Physics, Proc. Sympos. (Univ. Bonn, Bonn, 1975), Lecture Notes in Math., 570, Springer, Berlin–Heidelberg, 1977, 177–306 | DOI | MR

[49] Kravchuk P., Simmons-Duffin D., “Counting conformal correlators”, J. High Energy Phys., 2018:2 (2018), 096, 40 pp., arXiv: 1612.08987 | DOI | MR

[50] Lemos M., Liendo P., “Bootstrapping $\mathcal N=2$ chiral correlators”, J. High Energy Phys., 2016:1 (2016), 025, 39 pp., arXiv: 1510.03866 | DOI | MR

[51] Lemos M., Liendo P., Meneghelli C., Mitev V., “Bootstrapping $\mathcal N=3$ superconformal theories”, J. High Energy Phys., 2017:4 (2017), 032, 60 pp., arXiv: 1612.01536 | DOI | MR

[52] Li Z., Su N., “The most general $4\mathcal D$ $\mathcal N=1$ superconformal blocks for scalar operators”, J. High Energy Phys., 2016:5 (2016), 163, 28 pp., arXiv: 1602.07097 | DOI | MR

[53] Liendo P., Meneghelli C., “Bootstrap equations for $\mathcal N=4$ SYM with defects”, J. High Energy Phys., 2017:1 (2017), 122, 47 pp., arXiv: 1608.05126 | DOI | MR | Zbl

[54] Liendo P., Meneghelli C., Mitev V., “Bootstrapping the half-BPS line defect”, J. High Energy Phys., 2018:10 (2018), 077, 49 pp., arXiv: 1806.01862 | DOI | MR

[55] Mack G., “Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory”, Comm. Math. Phys., 53 (1977), 155–184 | DOI | MR

[56] Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, 257, 2nd ed., Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[57] Messiah A., Quantum mechanics, North-Holland Publishing Company, Amsterdam, 1962 | Zbl

[58] Nirschl M., Osborn H., “Superconformal Ward identities and their solution,”, Nuclear Phys. B, 711 (2005), 409–479, arXiv: hep-th/0407060 | DOI | MR | Zbl

[59] Osborn H., Petkou A., “Implications of conformal invariance in field theories for general dimensions”, Ann. Physics, 231 (1994), 311–362, arXiv: hep-th/9307010 | DOI | MR | Zbl

[60] Penedones J., Trevisani E., Yamazaki M., “Recursion relations for conformal blocks”, J. High Energy Phys., 2016:9 (2016), 070, 50 pp., arXiv: 1509.00428 | DOI | MR

[61] Poland D., Simmons-Duffin D., “Bounds on 4D conformal and superconformal field theories”, J. High Energy Phys., 2011:5 (2011), 017, 47 pp., arXiv: 1009.2087 | DOI | MR | Zbl

[62] Polyakov A. M., “Non-Hamiltonian approach to conformal quantum field theory”, Sov. Phys. JETP, 19 (1974), 10–18 | MR

[63] Quella T., Schomerus V., “Free fermion resolution of supergroup WZNW models”, J. High Energy Phys., 2007:9 (2007), 085, 51 pp., arXiv: 0706.0744 | DOI | MR

[64] Ramírez I. A., “Towards general super Casimir equations for $4D$ $\mathcal N=1$ {SCFT}s”, J. High Energy Phys., 2019:3 (2019), 047, 45 pp., arXiv: 1808.05455 | DOI

[65] Rattazzi R., Rychkov V. S., Tonni E., Vichi A., “Bounding scalar operator dimensions in 4D CFT”, J. High Energy Phys., 2008:12 (2008), 031, 49 pp., arXiv: 0807.0004 | DOI | MR | Zbl

[66] Saleur H., Schomerus V., “On the ${\rm SU}(2|1)$ WZNW model and its statistical mechanics applications”, Nuclear Phys. B, 775 (2007), 312–340, arXiv: hep-th/0611147 | DOI | MR | Zbl

[67] Scheunert M., Nahm W., Rittenberg V., “Irreducible representations of the ${\rm osp}(2,1)$ and ${\rm spl}(2,1)$ graded Lie algebras”, J. Math. Phys., 18 (1977), 155–162 | DOI | MR | Zbl

[68] Schomerus V., Saleur H., “The $\rm GL(1|1)$ WZW-model: from supergeometry to logarithmic CFT”, Nuclear Phys. B, 734 (2006), 221–245, arXiv: hep-th/0510032 | DOI | MR | Zbl

[69] Schomerus V., Sobko E., “From spinning conformal blocks to matrix Calogero–Sutherland models”, J. High Energy Phys., 2018:4 (2018), 052, 29 pp., arXiv: 1711.02022 | DOI | MR

[70] Schomerus V., Sobko E., Isachenkov M., “Harmony of spinning conformal blocks”, J. High Energy Phys., 2017:3 (2017), 085, 23 pp., arXiv: 1612.02479 | DOI | MR

[71] Simmons-Duffin D., “Projectors, shadows, and conformal blocks”, J. High Energy Phys., 2014:4 (2014), 146, 36 pp., arXiv: 1204.3894 | DOI | MR | Zbl

[72] Stokman J., Reshetikhin N., $N$-point spherical functions and asymptotic boundary KZB equations, arXiv: 2002.02251

[73] Tarasov V., Varchenko A., “Solutions to the quantized Knizhnik–Zamolodchikov equation and the Bethe-ansatz”, Group Theoretical Methods in Physics (Toyonaka, 1994), World Sci. Publ., River Edge, NJ, 1995, 473–478, arXiv: hep-th/9411181 | MR | Zbl

[74] Varchenko A., Tarasov V., “Jackson integral representations of solutions of the quantized Knizhnik–Zamolodchikov equation”, St. Petersburg Math. J., 6 (1995), 275–313, arXiv: hep-th/9311040 | MR