@article{SIGMA_2021_17_a59,
author = {Andrew James Bruce and Eduardo Ibargu\"engoytia and Norbert Poncin},
title = {Linear $\mathbb{Z}_2^n${-Manifolds} and {Linear} {Actions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a59/}
}
TY - JOUR
AU - Andrew James Bruce
AU - Eduardo Ibarguëngoytia
AU - Norbert Poncin
TI - Linear $\mathbb{Z}_2^n$-Manifolds and Linear Actions
JO - Symmetry, integrability and geometry: methods and applications
PY - 2021
VL - 17
UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a59/
LA - en
ID - SIGMA_2021_17_a59
ER -
%0 Journal Article
%A Andrew James Bruce
%A Eduardo Ibarguëngoytia
%A Norbert Poncin
%T Linear $\mathbb{Z}_2^n$-Manifolds and Linear Actions
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a59/
%G en
%F SIGMA_2021_17_a59
Andrew James Bruce; Eduardo Ibarguëngoytia; Norbert Poncin. Linear $\mathbb{Z}_2^n$-Manifolds and Linear Actions. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a59/
[1] Aizawa N., Isaac P.S., Segar J., “$\mathbb Z_2\times\mathbb Z_2$ generalizations of $\mathcal N=1$ superconformal Galilei algebras and their representations”, J. Math. Phys., 60 (2019), 023507, 11 pp., arXiv: 1808.09112 | DOI | MR
[2] Aizawa N., Kuznetsova Z., Tanaka H., Toppan F., “$\mathbb{Z}_2\times\mathbb{Z}_2$-graded Lie symmetries of the Lévy-Leblond equations”, Prog. Theor. Exp. Phys., 2016, 123A01, 26 pp., arXiv: 1609.08224 | DOI | MR
[3] Aizawa N., Segar J., “$\mathbb Z_2\times\mathbb Z_2$ generalizations of $\mathcal N=2$ super Schrödinger algebras and their representations”, J. Math. Phys., 58 (2017), 113501, 14 pp., arXiv: 1705.10414 | DOI | MR
[4] Albuquerque H., Majid S., “Quasialgebra structure of the octonions”, J. Algebra, 220 (1999), 188–224, arXiv: math.QA/9802116 | DOI | MR
[5] Albuquerque H., Majid S., “Clifford algebras obtained by twisting of group algebras”, J. Pure Appl. Algebra, 171 (2002), 133–148, arXiv: math.QA/0011040 | DOI | MR
[6] Balduzzi L., Carmeli C., Cassinelli G., “Super vector bundles”, J. Phys. Conf. Ser., 284 (2011), 012010, 10 pp. | DOI
[7] Bartocci C., Bruzzo U., Hernández Ruipérez D., The geometry of supermanifolds, Mathematics and its Applications, 71, Kluwer Academic Publishers Group, Dordrecht, 1991 | DOI | MR
[8] Bernstein J., Leites D., Molotkov V., Shander V., Seminars of Supersymmetries, v. 1, Algebra and calculus, MCCME, M., 2013
[9] Bonavolontà G., Poncin N., “On the category of Lie $n$-algebroids”, J. Geom. Phys., 73 (2013), 70–90 | DOI | MR
[10] Bruce A.J., “On a ${\mathbb Z}_2^n$-graded version of supersymmetry”, Symmetry, 11 (2019), 116, 20 pp., arXiv: 1812.02943 | DOI | MR
[11] Bruce A.J., Grabowski J., “Riemannian structures on ${\mathbb Z}_2^n$-manifolds”, Mathematics, 8 (2020), 1469, 23 pp., arXiv: 2007.07666 | DOI
[12] Bruce A.J., Ibarguengoytia E., “The graded differential geometry of mixed symmetry tensors”, Arch. Math. (Brno), 55 (2019), 123–137, arXiv: 1806.04048 | DOI | MR
[13] Bruce A.J., Ibarguengoytia E., Poncin N., “The Schwarz–Voronov embedding of $\mathbb Z_2^n$-manifolds”, SIGMA, 16 (2020), 002, 47 pp., arXiv: 1906.09834 | DOI | MR
[14] Bruce A.J., Poncin N., “Functional analytic issues in $\mathbb Z_2^n$-geometry”, Rev. Un. Mat. Argentina, 60 (2019), 611–636, arXiv: 1807.11739 | DOI | MR
[15] Bruce A. J., Poncin N., “Products in the category of $\mathbb Z^n_2$-manifolds”, J. Nonlinear Math. Phys., 26 (2019), 420–453, arXiv: 1807.11740 | DOI | MR
[16] Carmeli C., Caston L., Fioresi R., Mathematical foundations of supersymmetry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2011 | DOI | MR
[17] Carmeli C., Fioresi R., Varadarajan V.S., “Super bundles”, Universe, 4 (2018), 46, 12 pp., arXiv: 1801.07181 | DOI
[18] Covolo T., Grabowski J., Poncin N., “The category of $\mathbb{Z}_2^n$-supermanifolds”, J. Math. Phys., 57 (2016), 073503, 16 pp., arXiv: 1602.03312 | DOI | MR
[19] Covolo T., Grabowski J., Poncin N., “Splitting theorem for $\mathbb{Z}_2^n$-supermanifolds”, J. Geom. Phys., 110 (2016), 393–401, arXiv: 1602.03671 | DOI | MR
[20] Covolo T., Kwok S., Poncin N., Differential calculus on ${\mathbb Z}_{2}^{n}$-supermanifolds, arXiv: 1608.00949
[21] Covolo T., Kwok S., Poncin N., The Frobenius theorem for ${\mathbb Z}_{2}^{n}$-supermanifolds, arXiv: 1608.00961
[22] Covolo T., Kwok S., Poncin N., “Local forms of morphisms of colored supermanifolds”, J. Geom. Phys., 168 (2021), 104302, 21 pp., arXiv: 2010.10026 | DOI | MR
[23] Covolo T., Ovsienko V., Poncin N., “Higher trace and Berezinian of matrices over a Clifford algebra”, J. Geom. Phys., 62 (2012), 2294–2319, arXiv: 1109.5877 | DOI | MR
[24] Deligne P., Morgan J.W., “Notes on supersymmetry (following Joseph Bernstein)”, Quantum Fields and Strings: a Course for Mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 41–97 | MR
[25] di Brino G., Pištalo D., Poncin N., “Koszul–Tate resolutions as cofibrant replacements of algebras over differential operators”, J. Homotopy Relat. Struct., 13 (2018), 793–846, arXiv: 1801.03770 | DOI | MR
[26] Di Brino G., Pištalo D., Poncin N., “Homotopical algebraic context over differential operators”, J. Homotopy Relat. Struct., 14 (2019), 293–347, arXiv: 1706.05922 | DOI | MR
[27] Drühl K., Haag R., Roberts J.E., “On parastatistics”, Comm. Math. Phys., 18 (1970), 204–226 | DOI | MR
[28] Green H.S., “A generalized method of field quantization”, Phys. Rev., 90 (1953), 270–273 | DOI | MR
[29] Greenberg O.W., Messiah A.M.L., “Selection rules for parafields and the absence of para particles in nature”, Phys. Rev., 138 (1965), B1155–B1167 | DOI | MR
[30] Hamilton R.S., “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65–222 | DOI | MR
[31] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York – Heidelberg, 1977 | DOI | MR
[32] Kostant B., “Graded manifolds, graded Lie theory, and prequantization”, Differential Geometrical Methods in Mathematical Physics, Proc. Sympos. (Univ. Bonn, Bonn, 1975), Lecture Notes in Math., 570, Springer, Berlin – Heidelberg, 1977, 177–306 | DOI | MR
[33] Leites D.A., “Introduction to the theory of supermanifolds”, Russian Math. Surveys, 35:1 (1980), 1–64 | DOI | MR
[34] Leites D.A., Serganova V., “Models of representations of some classical supergroups”, Math. Scand., 68 (1991), 131–147 | DOI | MR
[35] Mac Lane S., Categories for the working mathematician, Graduate Texts in Mathematics, 5, 2nd ed., Springer-Verlag, New York, 1998 | DOI | MR
[36] Manin Yu.I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, Springer-Verlag, Berlin, 1997 | DOI | MR
[37] Poncin N., “Towards integration on colored supermanifolds”, Geometry of Jets and Fields, Banach Center Publ., 110, Polish Acad. Sci. Inst. Math., Warsaw, 2016, 201–217 | DOI | MR
[38] Sánchez-Valenzuela O.A., “Linear supergroup actions. I On the defining properties”, Trans. Amer. Math. Soc., 307 (1988), 569–595 | DOI | MR
[39] Schwarz A.S., “Supergravity, complex geometry and $G$-structures”, Comm. Math. Phys., 87 (1982), 37–63 | DOI | MR
[40] Schwarz A.S., “On the definition of superspace”, Theoret. and Math. Phys., 60 (1984), 657–660 | DOI
[41] Tennison B.R., Sheaf theory, London Mathematical Society Lecture Note Series, 20, Cambridge University Press, Cambridge, England – New York – Melbourne, 1975 | MR
[42] Toën B., Vezzosi G., “Homotopical algebraic geometry. I Topos theory”, Adv. Math., 193 (2005), 257–372, arXiv: math.AG/0207028 | DOI | MR
[43] Toën B., Vezzosi G., Homotopical algebraic geometry. II Geometric stacks and applications, Mem. Amer. Math. Soc., 193, 2008, x+224 pp., arXiv: math.AG/0404373 | DOI | MR
[44] Tolstoy V.N., “Super–de Sitter and alternative super-Poincaré symmetries”, Lie Theory and its Applications in Physics, Springer Proc. Math. Stat., 111, Springer, Tokyo, 2014, 357–367, arXiv: 1610.01566 | DOI | MR
[45] Varadarajan V.S., Supersymmetry for mathematicians: an introduction, Courant Lecture Notes in Mathematics, 11, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR
[46] Voronov A.A., “Maps of supermanifolds”, Theoret. and Math. Phys., 60 (1984), 660–664 | DOI | MR
[47] Waelbroeck L., Topological vector spaces and algebras, Lecture Notes in Math., 230, Springer-Verlag, Berlin – New York, 1971 | DOI | MR
[48] Yang W., Jing S., “A new kind of graded Lie algebra and parastatistical supersymmetry”, Sci. China Ser. A, 44 (2001), 1167–1173, arXiv: math-ph/0212004 | DOI | MR