@article{SIGMA_2021_17_a58,
author = {Lara Bossinger and Fatemeh Mohammadi and Alfredo N\'ajera Ch\'avez},
title = {Families of {Gr\"obner} {Degenerations,} {Grassmannians} and {Universal} {Cluster} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2021},
volume = {17},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a58/}
}
TY - JOUR AU - Lara Bossinger AU - Fatemeh Mohammadi AU - Alfredo Nájera Chávez TI - Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2021 VL - 17 UR - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a58/ LA - en ID - SIGMA_2021_17_a58 ER -
%0 Journal Article %A Lara Bossinger %A Fatemeh Mohammadi %A Alfredo Nájera Chávez %T Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras %J Symmetry, integrability and geometry: methods and applications %D 2021 %V 17 %U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a58/ %G en %F SIGMA_2021_17_a58
Lara Bossinger; Fatemeh Mohammadi; Alfredo Nájera Chávez. Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a58/
[1] Adams W. W., Loustaunau P., An introduction to Gröbner bases, Graduate Studies in Mathematics, 3, Amer. Math. Soc., Providence, RI, 1994 | DOI | MR | Zbl
[2] Akhtar M., Coates T., Galkin S., Kasprzyk A. M., “Minkowski polynomials and mutations”, SIGMA, 8 (2012), 094, 707 pp., arXiv: 1212.1785 | DOI | MR | Zbl
[3] Altmann K., Hausen J., “Polyhedral divisors and algebraic torus actions”, Math. Ann., 334 (2006), 557–607, arXiv: math.AG/0306285 | DOI | MR | Zbl
[4] Bossinger L., Grassmannians and universal coefficients for cluster algebras: computational data for ${\rm Gr}(3,6)$, https://www.matem.unam.mx/l̃ara/clusterGr36
[5] Bossinger L., “Full-rank valuations and toric initial ideals”, Int. Math. Res. Not., 2021 (2021), 7715–7763, arXiv: 1903.11068 | DOI | MR
[6] Bossinger L., Cheung M. W., Magee T., Nájera Chávez A., On cluster duality for Grassmannians, in preparation
[7] Bossinger L., Fang X., Fourier G., Hering M., Lanini M., “Toric degenerations of ${\rm Gr}(2, n)$ and ${\rm Gr}(3, 6)$ via plabic graphs”, Ann. Comb., 22 (2018), 491–512, arXiv: 1612.03838 | DOI | MR | Zbl
[8] Bossinger L., Fourier G., “String cone and superpotential combinatorics for flag and Schubert varieties in type A”, J. Combin. Theory Ser. A, 167 (2019), 213–256, arXiv: 1611.06504 | DOI | MR | Zbl
[9] Bossinger L., Frías-Medina B., Magee T., Nájera Chávez A., “Toric degenerations of cluster varieties and cluster duality”, Compos. Math., 156 (2020), 2149–2206, arXiv: 1809.08369 | DOI | MR | Zbl
[10] Bossinger L., Harada M., Mohammadi F., Toric degenerations of tropical Grassmannians, Extended abstract in Mathematisches Forschungsinstitut Oberwolfach, Workshop Report No 43, 2019 | Zbl
[11] Buchberger B., “An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal”, J. Symbolic Comput., 41 (2006), 475–511 | DOI | MR | Zbl
[12] Clarke O., Higashitani A., Mohammadi F., “Combinatorial mutations and block diagonal polytopes”, Collect. Math. (to appear) , arXiv: 2010.04079 | DOI
[13] Clarke O., Mohammadi F., “Toric degenerations of Grassmannians and Schubert varieties from matching field tableaux”, J. Algebra, 559 (2020), 646–678, arXiv: 1904.00981 | DOI | MR | Zbl
[14] Cox D. A., “The homogeneous coordinate ring of a toric variety”, J. Algebraic Geom., 4 (1995), 17–50, arXiv: alg-geom/9210008 | MR | Zbl
[15] Cox D. A., Little J. B., Schenck H. K., Toric varieties, Graduate Studies in Mathematics, 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[16] Derksen H., Weyman J., Zelevinsky A., “Quivers with potentials and their representations II: applications to cluster algebras”, J. Amer. Math. Soc., 23 (2010), 749–790, arXiv: 0904.0676 | DOI | MR | Zbl
[17] Dolgachev I., “Weighted projective varieties”, Group Actions and Vector Fields (Vancouver, BC, 1981), Lecture Notes in Math., 956, Springer, Berlin, 1982, 34–71 | DOI | MR
[18] Eisenbud D., Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[19] Escobar L., Harada M., “Wall-crossing for Newton–Okounkov bodies and the tropical Grassmannian”, Int. Math. Res. Not. (to appear) , arXiv: 1912.04809 | DOI
[20] Fock V. V., Goncharov A. B., “Cluster ensembles, quantization and the dilogarithm”, Ann. Sci. Éc. Norm. Supér. (4), 42 (2009), 865–930, arXiv: math.AG/0311245 | DOI | MR | Zbl
[21] Fomin S., Shapiro M., Thurston D., “Cluster algebras and triangulated surfaces. I Cluster complexes”, Acta Math., 201 (2008), 83–146, arXiv: math.RA/0608367 | DOI | MR | Zbl
[22] Fomin S., Thurston D., “Cluster algebras and triangulated surfaces. Part II Lambda lengths”, Mem. Amer. Math. Soc., 255, 2018, v+97 pp., arXiv: 1210.5569 | DOI | MR
[23] Fomin S., Zelevinsky A., “Cluster algebras. I Foundations”, J. Amer. Math. Soc., 15 (2002), 497–529, arXiv: math.RT/0104151 | DOI | MR | Zbl
[24] Fomin S., Zelevinsky A., “$Y$-systems and generalized associahedra”, Ann. of Math., 158 (2003), 977–1018, arXiv: hep-th/0111053 | DOI | MR | Zbl
[25] Fomin S., Zelevinsky A., “Cluster algebras. IV Coefficients”, Compos. Math., 143 (2007), 112–164, arXiv: math.RA/0602259 | DOI | MR | Zbl
[26] Fujita N., Oya H., Newton–Okounkov polytopes of Schubert varieties arising from cluster structures, arXiv: 2002.09912
[27] Grayson D., Stillman M., Macaulay2, a software system for research in algebraic geometry, https://faculty.math.illinois.edu/Macaulay2/
[28] Gross M., Hacking P., Keel S., Kontsevich M., “Canonical bases for cluster algebras”, J. Amer. Math. Soc., 31 (2018), 497–608, arXiv: 1411.1394 | DOI | MR | Zbl
[29] Herzog J., Hibi T., Monomial ideals, Graduate Texts in Mathematics, 260, Springer-Verlag London, Ltd., London, 2011 | DOI | MR | Zbl
[30] Hosgood T., An introduction to varieties in weighted projective space, arXiv: 1604.02441
[31] Ilten N. O., “Mutations of Laurent polynomials and flat families with toric fibers”, SIGMA, 8 (2012), 047, 7 pp., arXiv: 1205.4664 | DOI | MR | Zbl
[32] Kateri M., Mohammadi F., Sturmfels B., “A family of quasisymmetry models”, J. Algebr. Stat., 6 (2015), 1–16, arXiv: 1403.0547 | DOI | MR | Zbl
[33] Kaveh K., Manon C., Toric flat families, valuations, and tropical geometry over the semifield of piecewise linear functions, arXiv: 1907.00543
[34] Kaveh K., Manon C., “Khovanskii bases, higher rank valuations, and tropical geometry”, SIAM J. Appl. Algebra Geom., 3 (2019), 292–336, arXiv: 1610.00298 | DOI | MR | Zbl
[35] Keller B., Quiver mutation in JavaScript, https://webusers.imj-prg.fr/b̃ernhard.keller/quivermutation/
[36] Keller B., “Cluster algebras and derived categories”, Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 123–183, arXiv: 1202.4161 | DOI | MR | Zbl
[37] Kreuzer M., Robbiano L., Computational commutative algebra, v. 2, Springer-Verlag, Berlin, 2005 | DOI | MR | Zbl
[38] Maclagan D., Sturmfels B., Introduction to tropical geometry, Graduate Studies in Mathematics, 161, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl
[39] Mohammadi F., Shaw K., “Toric degenerations of Grassmannians from matching fields”, Algebr. Comb., 2 (2019), 1109–1124, arXiv: 1809.01026 | DOI | MR | Zbl
[40] Mora T., Robbiano L., “The Gröbner fan of an ideal”, J. Symbolic Comput., 6 (1988), 183–208 | DOI | MR | Zbl
[41] Muller G., Rajchgot J., Zykoski B., “Lower bound cluster algebras: presentations, Cohen–Macaulayness, and normality”, Algebr. Comb., 1 (2018), 95–114, arXiv: 1508.02314 | DOI | MR | Zbl
[42] Nájera Chávez A., “A 2-Calabi–Yau realization of finite-type cluster algebras with universal coefficients”, Math. Z., 291 (2019), 1495–1523, arXiv: 1512.07939 | DOI | MR | Zbl
[43] Reading N., “Universal geometric cluster algebras”, Math. Z., 277 (2014), 499–547, arXiv: 1209.3987 | DOI | MR | Zbl
[44] Reading N., “Universal geometric cluster algebras from surfaces”, Trans. Amer. Math. Soc., 366 (2014), 6647–6685, arXiv: 1209.4095 | DOI | MR | Zbl
[45] Reid M., Graded rings and varieties in weighted projective space, https://homepages.warwick.ac.uk/m̃asda/surf/more/grad.pdf
[46] Rietsch K., Williams L., “Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians”, Duke Math. J., 168 (2019), 3437–3527, arXiv: 1712.00447 | DOI | MR | Zbl
[47] Scott J. S., “Grassmannians and cluster algebras”, Proc. London Math. Soc., 92 (2006), 345–380, arXiv: math.CO/0311148 | DOI | MR | Zbl
[48] Serhiyenko K., Sherman-Bennett M., Williams L., “Cluster structures in Schubert varieties in the Grassmannian”, Proc. London Math. Soc., 119 (2019), 1694–1744, arXiv: 1902.00807 | DOI | MR | Zbl
[49] Speyer D., Sturmfels B., “The tropical Grassmannian”, Adv. Geom., 4 (2004), 389–411, arXiv: math.AG/0304218 | DOI | MR | Zbl
[50] Speyer D., Williams L., “The tropical totally positive Grassmannian”, J. Algebraic Combin., 22 (2005), 189–210, arXiv: math.CO/0312297 | DOI | MR | Zbl
[51] Sturmfels B., Gröbner bases and convex polytopes, University Lecture Series, 8, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl
[52] Usnich A., On the Cremona group and its subgroups, Ph.D. Thesis, Université Pierre et Marie Curie - Paris VI, 2008 | MR