Integrable $\mathcal{E}$-Models, $4\mathrm{d}$ Chern–Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects
Symmetry, integrability and geometry: methods and applications, Tome 17 (2021) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the actions of a very broad family of $2\mathrm{d}$ integrable $\sigma$-models. Our starting point is a universal $2\mathrm{d}$ action obtained in [arXiv:2008.01829] using the framework of Costello and Yamazaki based on $4\mathrm{d}$ Chern–Simons theory. This $2\mathrm{d}$ action depends on a pair of $2\mathrm{d}$ fields $h$ and $\mathcal{L}$, with $\mathcal{L}$ depending rationally on an auxiliary complex parameter, which are tied together by a constraint. When the latter can be solved for $\mathcal{L}$ in terms of $h$ this produces a $2\mathrm{d}$ integrable field theory for the $2\mathrm{d}$ field $h$ whose Lax connection is given by $\mathcal{L}(h)$. We construct a general class of solutions to this constraint and show that the resulting $2\mathrm{d}$ integrable field theories can all naturally be described as $\mathcal{E}$-models.
Keywords: $4\mathrm{d}$ Chern–Simons theory, $\mathcal E$-models, affine Gaudin models, integrable $\sigma$-models.
@article{SIGMA_2021_17_a57,
     author = {Sylvain Lacroix and Beno{\^\i}t Vicedo},
     title = {Integrable $\mathcal{E}${-Models,} $4\mathrm{d}$ {Chern{\textendash}Simons} {Theory} and {Affine} {Gaudin} {Models.} {I.~Lagrangian} {Aspects}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2021},
     volume = {17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a57/}
}
TY  - JOUR
AU  - Sylvain Lacroix
AU  - Benoît Vicedo
TI  - Integrable $\mathcal{E}$-Models, $4\mathrm{d}$ Chern–Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2021
VL  - 17
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a57/
LA  - en
ID  - SIGMA_2021_17_a57
ER  - 
%0 Journal Article
%A Sylvain Lacroix
%A Benoît Vicedo
%T Integrable $\mathcal{E}$-Models, $4\mathrm{d}$ Chern–Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects
%J Symmetry, integrability and geometry: methods and applications
%D 2021
%V 17
%U http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a57/
%G en
%F SIGMA_2021_17_a57
Sylvain Lacroix; Benoît Vicedo. Integrable $\mathcal{E}$-Models, $4\mathrm{d}$ Chern–Simons Theory and Affine Gaudin Models. I. Lagrangian Aspects. Symmetry, integrability and geometry: methods and applications, Tome 17 (2021). http://geodesic.mathdoc.fr/item/SIGMA_2021_17_a57/

[1] Ashwinkumar M., Png K.-S., Tan M.-C., 4d Chern–Simons theory as a 3d Toda theory, and a 3d-2d correspondence, arXiv: 2008.06053

[2] Bassi C., Lacroix S., “Integrable deformations of coupled $\sigma$-models”, J. High Energy Phys., 2020:5 (2020), 059, 58 pp., arXiv: 1912.06157 | DOI | MR

[3] Benini M., Schenkel A., Vicedo B., Homotopical analysis of 4d Chern–Simons theory and integrable field theories, arXiv: 2008.01829

[4] Bittleston R., Skinner D., Twistors, the ASD Yang–Mills equations, and 4d Chern–Simons theory, arXiv: 2011.04638

[5] Bykov D., “Flag manifold sigma models and nilpotent orbits”, Proc. Steklov Inst. Math., 309 (2020), 78–86, arXiv: 1911.07768 | DOI | MR | Zbl

[6] Bykov D., Quantum flag manifold $\sigma$-models and Hermitian Ricci flow, arXiv: 2006.14124

[7] Bykov D., The $\mathbb{CP}^{n-1}$-model with fermions: a new look, arXiv: 2009.04608

[8] Costello K., Supersymmetric gauge theory and the Yangian, arXiv: 1303.2632

[9] Costello K., “Integrable lattice models from four-dimensional field theories”, String-Math 2013, Proc. Sympos. Pure Math., 88, Amer. Math. Soc., Providence, RI, 2014, 3–23, arXiv: 1308.0370 | DOI | MR | Zbl

[10] Costello K., Stefański Jr. B., “Chern–Simons origin of superstring integrability”, Phys. Rev. Lett., 125 (2020), 121602, 6 pp., arXiv: 2005.03064 | DOI | MR

[11] Costello K., Witten E., Yamazaki M., “Gauge theory and integrability, I”, ICCM Not., 6 (2018), 46–119, arXiv: 1709.09993 | DOI | MR | Zbl

[12] Costello K., Witten E., Yamazaki M., “Gauge theory and integrability, II”, ICCM Not., 6 (2018), 120–146, arXiv: 1802.01579 | DOI | MR | Zbl

[13] Costello K., Yamazaki M., Gauge theory and integrability, III, arXiv: 1908.02289

[14] Curtright T., Zachos C., “Currents, charges, and canonical structure of pseudodual chiral models”, Phys. Rev. D, 49 (1994), 5408–5421, arXiv: hep-th/9401006 | DOI | MR

[15] Delduc F., Hoare B., Kameyama T., Magro M., “Combining the bi-Yang–Baxter deformation, the Wess–Zumino term and TsT transformations in one integrable $\sigma$-model”, J. High Energy Phys., 2017:10 (2017), 212, 20 pp., arXiv: 1707.08371 | DOI | MR | Zbl

[16] Delduc F., Lacroix S., Magro M., Vicedo B., “Assembling integrable $\sigma$-models as affine Gaudin models”, J. High Energy Phys., 2019:6 (2019), 017, 86 pp., arXiv: 1903.00368 | DOI | MR

[17] Delduc F., Lacroix S., Magro M., Vicedo B., “A unifying 2D action for integrable $\sigma$-models from 4D Chern–Simons theory”, Lett. Math. Phys., 110 (2020), 1645–1687, arXiv: 1909.13824 | DOI | MR | Zbl

[18] Demulder S., Driezen S., Sevrin A., Thompson D. C., “Classical and quantum aspects of Yang–Baxter Wess–Zumino models”, J. High Energy Phys., 2018:3 (2018), 041, 38 pp., arXiv: 1711.00084 | DOI | MR

[19] Demulder S., Hassler F., Thompson D. C., “Doubled aspects of generalised dualities and integrable deformations”, J. High Energy Phys., 2019:2 (2019), 189, 54 pp., arXiv: 1810.11446 | DOI | MR | Zbl

[20] Demulder S., Hassler F., Thompson D. C., “An invitation to Poisson–Lie $T$-duality in double field theory and its applications”, PoS(CORFU2018), PoS Proc. Sci., 2019, 113, 30 pp., arXiv: 1904.09992 | DOI

[21] Evans J. M., Integrable sigma-models and Drinfeld–Sokolov hierarchies, Nuclear Phys. B, 608 (2001), 591–609, arXiv: hep-th/0101231 | DOI | MR | Zbl

[22] Evans J. M., Hassan M., MacKay N. J., Mountain A. J., “Local conserved charges in principal chiral models”, Nuclear Phys. B, 561 (1999), 385–412, arXiv: hep-th/9902008 | DOI | MR | Zbl

[23] Evans J. M., Mountain A. J., “Commuting charges and symmetric spaces”, Phys. Lett. B, 483 (2000), 290–298, arXiv: hep-th/0003264 | DOI | MR | Zbl

[24] Fradkin E. S., Tseytlin A. A., “Quantum equivalence of dual field theories”, Ann. Physics, 162 (1985), 31–48 | DOI | MR

[25] Fridling B. E., Jevicki A., “Dual representations and ultraviolet divergences in nonlinear $\sigma$-models”, Phys. Lett. B, 134 (1984), 70–74 | DOI

[26] Fukushima O., Sakamoto J.-i., Yoshida K., “Comments on $\eta$-deformed principal chiral model from 4D Chern–Simons theory”, Nuclear Phys. B, 957 (2020), 115080, 37 pp., arXiv: 2003.07309 | DOI | MR

[27] Fukushima O., Sakamoto J.-i., Yoshida K., “Yang–Baxter deformations of the $\rm AdS_5\times S^5$ supercoset sigma model from 4D Chern–Simons theory”, J. High Energy Phys., 2020:9 (2020), 100, 22 pp., arXiv: 2005.04950 | DOI | MR | Zbl

[28] Hoare B., Lacroix S., “Yang–Baxter deformations of the principal chiral model plus Wess–Zumino term”, J. Phys. A: Math. Theor., 53 (2020), 505401, 53 pp., arXiv: 2009.00341 | DOI | MR

[29] Hoare B., Tseytlin A. A., “On integrable deformations of superstring sigma models related to ${\rm AdS}_n\times S^n$ supercosets”, Nuclear Phys. B, 897 (2015), 448–478, arXiv: 1504.07213 | DOI | MR | Zbl

[30] Klimčík C., “Yang–Baxter $\sigma$-models and dS/AdS $T$-duality”, J. High Energy Phys., 2002:12 (2002), 051, 23 pp., arXiv: hep-th/0210095 | DOI

[31] Klimčík C., “On integrability of the Yang–Baxter $\sigma$-model”, J. Math. Phys., 50 (2009), 043508, 11 pp., arXiv: 0802.3518 | DOI | MR | Zbl

[32] Klimčík C., “$\eta$ and $\lambda$ deformations as $\mathcal{E}$-models”, Nuclear Phys. B, 900 (2015), 259–272, arXiv: 1508.05832 | DOI | MR | Zbl

[33] Klimčík C., “Yang–Baxter $\sigma$-model with WZNW term as ${\mathcal E}$-model”, Phys. Lett. B, 772 (2017), 725–730, arXiv: 1706.08912 | DOI | Zbl

[34] Klimčík C., “Affine Poisson and affine quasi-Poisson T-duality”, Nuclear Phys. B, 939 (2019), 191–232, arXiv: 1809.01614 | DOI | MR | Zbl

[35] Klimčík C., “Dressing cosets and multi-parametric integrable deformations”, J. High Energy Phys., 2019:7 (2019), 176, 44 pp., arXiv: 1903.00439 | DOI

[36] Klimčík C., “Strong integrability of the bi-YB-WZ model”, Lett. Math. Phys., 110 (2020), 2397–2416, arXiv: 2001.05466 | DOI | MR | Zbl

[37] Klimčík C., Ševera P., “Dual non-abelian duality and the Drinfel'd double”, Phys. Lett. B, 351 (1995), 455–462, arXiv: hep-th/9502122 | DOI | MR

[38] Klimčík C., Ševera P., “Dressing cosets”, Phys. Lett. B, 381 (1996), 56–61, arXiv: hep-th/9602162 | DOI | MR | Zbl

[39] Klimčík C., Ševera P., “Non-abelian momentum-winding exchange”, Phys. Lett. B, 383 (1996), 281–286, arXiv: hep-th/9605212 | DOI | MR

[40] Klimčík C., Ševera P., “Poisson–Lie $T$-duality and loop groups of Drinfeld doubles”, Phys. Lett. B, 372 (1996), 65–71, arXiv: hep-th/9512040 | DOI | MR | Zbl

[41] Lacroix S., “Constrained affine Gaudin models and diagonal Yang–Baxter deformations”, J. Phys. A: Math. Theor., 53 (2020), 255203, 91 pp., arXiv: 1907.04836 | DOI | MR

[42] Lacroix S., Magro M., Vicedo B., “Local charges in involution and hierarchies in integrable sigma-models”, J. High Energy Phys., 2017:9 (2017), 117, 62 pp., arXiv: 1703.01951 | DOI | MR | Zbl

[43] Lacroix S., Vicedo B., Integrable ${\mathcal E}$-models, 4d Chern–Simons theory and affine Gaudin models, II: Hamiltonian aspects, in preparation | MR

[44] Maillet J.-M., “Kac–Moody algebra and extended Yang–Baxter relations in the ${\rm O}(N)$ nonlinear $\sigma$-model”, Phys. Lett. B, 162 (1985), 137–142 | DOI | MR

[45] Maillet J.-M., “New integrable canonical structures in two-dimensional models”, Nuclear Phys. B, 269 (1986), 54–76 | DOI | MR

[46] Nappi C. R., “Some properties of an analog of the chiral model”, Phys. Rev. D, 21 (1980), 418–420 | DOI

[47] Penna R. F., A twistor action for integrable systems, arXiv: 2011.05831

[48] Polyakov A., Wiegmann P. B., “Theory of nonabelian Goldstone bosons in two dimensions”, Phys. Lett. B, 131 (1983), 121–126 | DOI | MR

[49] Schmidtt D. M., “Integrable lambda models and Chern–Simons theories”, J. High Energy Phys., 2017:5 (2017), 012, 23 pp., arXiv: 1701.04138 | DOI | MR

[50] Schmidtt D. M., “Lambda models from Chern–Simons theories”, J. High Energy Phys., 2018:11 (2018), 111, 49 pp., arXiv: 1808.05994 | DOI | MR | Zbl

[51] Schmidtt D. M., “Holomorphic Chern-Simons theory and lambda models: PCM case”, J. High Energy Phys., 2020:4 (2020), 060, 25 pp., arXiv: 1912.07569 | DOI | MR

[52] Ševera P., “Poisson–Lie $T$-duality as a boundary phenomenon of Chern–Simmons theory”, J. High Energy Phys., 2016:5 (2016), 044, 18 pp., arXiv: 1602.05126 | DOI | MR

[53] Ševera P., “On integrability of 2-dimensional $\sigma$-models of Poisson–Lie type”, J. High Energy Phys., 2017:11 (2017), 015, 9 pp., arXiv: 1709.02213 | DOI

[54] Sfetsos K., “Poisson–Lie $T$-duality and supersymmetry”, Nuclear Phys. B Proc. Suppl., 56B (1997), 302–309, arXiv: hep-th/9611199 | DOI | MR

[55] Sfetsos K., “Canonical equivalence of non-isometric $\sigma$-models and Poisson–Lie $T$-duality”, Nuclear Phys. B, 517 (1998), 549–566, arXiv: hep-th/9710163 | DOI | MR | Zbl

[56] Sfetsos K., “Duality-invariant class of two-dimensional field theories”, Nuclear Phys. B, 561 (1999), 316–340, arXiv: hep-th/9904188 | DOI | MR | Zbl

[57] Sfetsos K., “Integrable interpolations: from exact CFTs to non-Abelian $T$-duals”, Nuclear Phys. B, 880 (2014), 225–246, arXiv: 1312.4560 | DOI | MR | Zbl

[58] Sfetsos K., Siampos K., Thompson D. C., “Generalised integrable $\lambda$- and $\eta$-deformations and their relation”, Nuclear Phys. B, 899 (2015), 489–512, arXiv: 1506.05784 | DOI | MR | Zbl

[59] Squellari R., “Dressing cosets revisited”, Nuclear Phys. B, 853 (2011), 379–403, arXiv: 1105.0162 | DOI | MR | Zbl

[60] Tian J., Comments on $\lambda$-deformed models from 4D Chern–Simons theory, arXiv: 2005.14554

[61] Tian J., He Y.-J., Chen B., $\lambda$-deformed ${\rm AdS}_5\times S^5$ superstring from 4D Chern–Simons theory, arXiv: 2007.00422

[62] Vavřín Z., “Confluent Cauchy and Cauchy–Vandermonde matrices”, Linear Algebra Appl., 258 (1997), 271–293 | DOI | MR | Zbl

[63] Vicedo B., “Deformed integrable $\sigma$-models, classical $R$-matrices and classical exchange algebra on Drinfel'd doubles”, J. Phys. A: Math. Theor., 48 (2015), 355203, 33 pp., arXiv: 1504.06303 | DOI | MR | Zbl

[64] Vicedo B., “On integrable field theories as dihedral affine Gaudin models”, Int. Math. Res. Not., 2020 (2020), 4513–4601, arXiv: 1701.04856 | DOI | MR

[65] Vicedo B., “4D Chern–Simons theory and affine Gaudin models”, Lett. Math. Phys., 111 (2021), 24, 21 pp., arXiv: 1908.07511 | DOI | MR | Zbl

[66] Vizman C., “The group structure for jet bundles over Lie groups”, J. Lie Theory, 23 (2013), 885–897, arXiv: 1304.5024 | MR | Zbl

[67] Witten E., “Integrable lattice models from gauge theory”, Adv. Theor. Math. Phys., 21 (2017), 1819–1843, arXiv: 1611.00592 | DOI | MR

[68] Zakharov V. E., Mikhailov A. V., “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Soviet Phys. JETP, 47 (1978), 1017–1027 | MR